聚合材料表征的分层数据分析:连接测量和统计方法

Nicholas Filipovic, A. Scott, A. Penlidis
{"title":"聚合材料表征的分层数据分析:连接测量和统计方法","authors":"Nicholas Filipovic, A. Scott, A. Penlidis","doi":"10.18260/2-1-370.660-122355","DOIUrl":null,"url":null,"abstract":"As future chemical engineers, it is important that students be able to identify and quantify sources of error. A statistical analysis technique that is often overlooked is hierarchical design methodology, which allows for the separation of overall variance into several related components. While hierarchical methodology is relevant to many fields, we have demonstrated that it can be taught through the synthesis and characterization of polymeric materials. Basic statistical concepts are described, along with relevant examples.","PeriodicalId":72557,"journal":{"name":"Chemical engineering education","volume":"1 1","pages":"11-22"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Data Analysis for the Characterization of Polymeric Materials: Linking Measurements and Statistical Methodology\",\"authors\":\"Nicholas Filipovic, A. Scott, A. Penlidis\",\"doi\":\"10.18260/2-1-370.660-122355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As future chemical engineers, it is important that students be able to identify and quantify sources of error. A statistical analysis technique that is often overlooked is hierarchical design methodology, which allows for the separation of overall variance into several related components. While hierarchical methodology is relevant to many fields, we have demonstrated that it can be taught through the synthesis and characterization of polymeric materials. Basic statistical concepts are described, along with relevant examples.\",\"PeriodicalId\":72557,\"journal\":{\"name\":\"Chemical engineering education\",\"volume\":\"1 1\",\"pages\":\"11-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical engineering education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18260/2-1-370.660-122355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical engineering education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18260/2-1-370.660-122355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为未来的化学工程师,重要的是学生能够识别和量化误差的来源。一种经常被忽视的统计分析技术是分层设计方法,它允许将总体方差分离为几个相关的组成部分。虽然分层方法与许多领域相关,但我们已经证明,它可以通过聚合物材料的合成和表征来教授。描述了基本的统计概念,以及相关的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Data Analysis for the Characterization of Polymeric Materials: Linking Measurements and Statistical Methodology
As future chemical engineers, it is important that students be able to identify and quantify sources of error. A statistical analysis technique that is often overlooked is hierarchical design methodology, which allows for the separation of overall variance into several related components. While hierarchical methodology is relevant to many fields, we have demonstrated that it can be taught through the synthesis and characterization of polymeric materials. Basic statistical concepts are described, along with relevant examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信