量子点太阳能电池光学谐振纳米结构中的载流子收集

Stefan Wil Tabernig, Lin Yuan, Yijun Gao, Z. Teh, Andrea Cordaro, Andreas Pusch, R. Patterson, Shujuan Huang, A. Polman
{"title":"量子点太阳能电池光学谐振纳米结构中的载流子收集","authors":"Stefan Wil Tabernig, Lin Yuan, Yijun Gao, Z. Teh, Andrea Cordaro, Andreas Pusch, R. Patterson, Shujuan Huang, A. Polman","doi":"10.1109/PVSC43889.2021.9518420","DOIUrl":null,"url":null,"abstract":"One of the most interesting - but often underappreciated - absorber materials for solar cells are PbS quantum dot (QD) layers. In principle, the tuneable bandgap, that derives from quantum confinement, together with strong absorption, which allows for thin and flexible layers, as well as the ease of fabrication in form of solution deposition, are each strong arguments for thin-film-QD absorber layer based solar cells. However, so far, those advantages have been met with notable disadvantages which have hindered a faster and more enthusiastic uptake of QD absorber layers in the scientific community. A major hindrance is the low diffusion length of charge carriers in the absorber, limiting the maximum possible absorber thickness, thus requiring an unsatisfying compromise between short-circuit current density (J SC ) and open-circuit voltage (V OC ). In this work, we lay out a path on how to address this issue, by introducing a 3-dimensionally structured p-n heterojunction ( Fig. 1 ) that can increase charge carrier generation, as well as improve extraction in comparison to flat cell geometries.","PeriodicalId":6788,"journal":{"name":"2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)","volume":"24 1","pages":"0803-0805"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carrier collection in optically resonant nanostructures for quantum dot solar cells\",\"authors\":\"Stefan Wil Tabernig, Lin Yuan, Yijun Gao, Z. Teh, Andrea Cordaro, Andreas Pusch, R. Patterson, Shujuan Huang, A. Polman\",\"doi\":\"10.1109/PVSC43889.2021.9518420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most interesting - but often underappreciated - absorber materials for solar cells are PbS quantum dot (QD) layers. In principle, the tuneable bandgap, that derives from quantum confinement, together with strong absorption, which allows for thin and flexible layers, as well as the ease of fabrication in form of solution deposition, are each strong arguments for thin-film-QD absorber layer based solar cells. However, so far, those advantages have been met with notable disadvantages which have hindered a faster and more enthusiastic uptake of QD absorber layers in the scientific community. A major hindrance is the low diffusion length of charge carriers in the absorber, limiting the maximum possible absorber thickness, thus requiring an unsatisfying compromise between short-circuit current density (J SC ) and open-circuit voltage (V OC ). In this work, we lay out a path on how to address this issue, by introducing a 3-dimensionally structured p-n heterojunction ( Fig. 1 ) that can increase charge carrier generation, as well as improve extraction in comparison to flat cell geometries.\",\"PeriodicalId\":6788,\"journal\":{\"name\":\"2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"24 1\",\"pages\":\"0803-0805\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC43889.2021.9518420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 48th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC43889.2021.9518420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

其中一个最有趣的-但往往被低估-太阳能电池吸收材料是PbS量子点(QD)层。原则上,可调谐的带隙,源于量子约束,加上强吸收,允许薄而灵活的层,以及易于以溶液沉积的形式制造,都是薄膜qd吸收层太阳能电池的有力论据。然而,到目前为止,这些优点已经遇到了明显的缺点,这阻碍了科学界对量子点吸收层的更快和更热情的吸收。一个主要的障碍是吸收剂中载流子的低扩散长度,限制了吸收剂的最大可能厚度,因此需要在短路电流密度(jsc)和开路电压(voc)之间进行令人不满意的折衷。在这项工作中,我们通过引入三维结构的p-n异质结(图1),为如何解决这个问题提供了一条途径,该异质结可以增加电荷载流子的产生,并且与平面电池几何形状相比,可以改善提取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Carrier collection in optically resonant nanostructures for quantum dot solar cells
One of the most interesting - but often underappreciated - absorber materials for solar cells are PbS quantum dot (QD) layers. In principle, the tuneable bandgap, that derives from quantum confinement, together with strong absorption, which allows for thin and flexible layers, as well as the ease of fabrication in form of solution deposition, are each strong arguments for thin-film-QD absorber layer based solar cells. However, so far, those advantages have been met with notable disadvantages which have hindered a faster and more enthusiastic uptake of QD absorber layers in the scientific community. A major hindrance is the low diffusion length of charge carriers in the absorber, limiting the maximum possible absorber thickness, thus requiring an unsatisfying compromise between short-circuit current density (J SC ) and open-circuit voltage (V OC ). In this work, we lay out a path on how to address this issue, by introducing a 3-dimensionally structured p-n heterojunction ( Fig. 1 ) that can increase charge carrier generation, as well as improve extraction in comparison to flat cell geometries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信