欧几里德空间中海森堡子流形的Bi-Lipschitz嵌入

IF 0.9 4区 数学 Q2 Mathematics
Vasileios Chousionis, Sean Li, Vyron Vellis, Scott Zimmerman
{"title":"欧几里德空间中海森堡子流形的Bi-Lipschitz嵌入","authors":"Vasileios Chousionis, Sean Li, Vyron Vellis, Scott Zimmerman","doi":"10.5186/aasfm.2020.4551","DOIUrl":null,"url":null,"abstract":"The Heisenberg group $\\mathbb{H}$ equipped with a sub-Riemannian metric is one of the most well known examples of a doubling metric space which does not admit a bi-Lipschitz embedding into any Euclidean space. In this paper we investigate which \\textit{subsets} of $\\mathbb{H}$ bi-Lipschitz embed into Euclidean spaces. We show that there exists a universal constant $L>0$ such that lines $L$-bi-Lipschitz embed into $\\mathbb{R}^3$ and planes $L$-bi-Lipschitz embed into $\\mathbb{R}^4$. Moreover, $C^{1,1}$ $2$-manifolds without characteristic points as well as all $C^{1,1}$ $1$-manifolds locally $L$-bi-Lipschitz embed into $\\mathbb{R}^4$ where the constant $L$ is again universal. We also consider several examples of compact surfaces with characteristic points and we prove, for example, that Koranyi spheres bi-Lipschitz embed into $\\mathbb{R}^4$ with a uniform constant. Finally, we show that there exists a compact, porous subset of $\\mathbb{H}$ which does not admit a bi-Lipschitz embedding into any Euclidean space.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2018-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bi-Lipschitz embeddings of Heisenberg submanifolds into Euclidean spaces\",\"authors\":\"Vasileios Chousionis, Sean Li, Vyron Vellis, Scott Zimmerman\",\"doi\":\"10.5186/aasfm.2020.4551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Heisenberg group $\\\\mathbb{H}$ equipped with a sub-Riemannian metric is one of the most well known examples of a doubling metric space which does not admit a bi-Lipschitz embedding into any Euclidean space. In this paper we investigate which \\\\textit{subsets} of $\\\\mathbb{H}$ bi-Lipschitz embed into Euclidean spaces. We show that there exists a universal constant $L>0$ such that lines $L$-bi-Lipschitz embed into $\\\\mathbb{R}^3$ and planes $L$-bi-Lipschitz embed into $\\\\mathbb{R}^4$. Moreover, $C^{1,1}$ $2$-manifolds without characteristic points as well as all $C^{1,1}$ $1$-manifolds locally $L$-bi-Lipschitz embed into $\\\\mathbb{R}^4$ where the constant $L$ is again universal. We also consider several examples of compact surfaces with characteristic points and we prove, for example, that Koranyi spheres bi-Lipschitz embed into $\\\\mathbb{R}^4$ with a uniform constant. Finally, we show that there exists a compact, porous subset of $\\\\mathbb{H}$ which does not admit a bi-Lipschitz embedding into any Euclidean space.\",\"PeriodicalId\":50787,\"journal\":{\"name\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2018-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5186/aasfm.2020.4551\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/aasfm.2020.4551","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

具有次黎曼度规的海森堡群$\mathbb{H}$是最著名的双度规空间的例子之一,它不允许双利普希茨嵌入任何欧几里德空间。本文研究了$\mathbb{H}$ bi-Lipschitz的哪些\textit{子集}嵌入到欧几里德空间中。我们证明存在一个普适常数$L>0$,使得直线$L$ -bi-Lipschitz嵌入$\mathbb{R}^3$,平面$L$ -bi-Lipschitz嵌入$\mathbb{R}^4$。此外,$C^{1,1}$$2$ -流形没有特征点,以及所有的$C^{1,1}$$1$ -流形局部$L$ -bi-Lipschitz嵌入到$\mathbb{R}^4$常数$L$再次普遍。我们还考虑了几个具有特征点的紧致曲面的例子,并证明了例如Koranyi球双lipschitz嵌入$\mathbb{R}^4$的一致常数。最后,我们证明了存在一个紧致的多孔子集$\mathbb{H}$,它不允许双lipschitz嵌入到任何欧几里德空间中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bi-Lipschitz embeddings of Heisenberg submanifolds into Euclidean spaces
The Heisenberg group $\mathbb{H}$ equipped with a sub-Riemannian metric is one of the most well known examples of a doubling metric space which does not admit a bi-Lipschitz embedding into any Euclidean space. In this paper we investigate which \textit{subsets} of $\mathbb{H}$ bi-Lipschitz embed into Euclidean spaces. We show that there exists a universal constant $L>0$ such that lines $L$-bi-Lipschitz embed into $\mathbb{R}^3$ and planes $L$-bi-Lipschitz embed into $\mathbb{R}^4$. Moreover, $C^{1,1}$ $2$-manifolds without characteristic points as well as all $C^{1,1}$ $1$-manifolds locally $L$-bi-Lipschitz embed into $\mathbb{R}^4$ where the constant $L$ is again universal. We also consider several examples of compact surfaces with characteristic points and we prove, for example, that Koranyi spheres bi-Lipschitz embed into $\mathbb{R}^4$ with a uniform constant. Finally, we show that there exists a compact, porous subset of $\mathbb{H}$ which does not admit a bi-Lipschitz embedding into any Euclidean space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio. AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信