具有收敛保证的场景适应即插即用算法

Afonso M. Teodoro, J. Bioucas-Dias, Mário A. T. Figueiredo
{"title":"具有收敛保证的场景适应即插即用算法","authors":"Afonso M. Teodoro, J. Bioucas-Dias, Mário A. T. Figueiredo","doi":"10.1109/MLSP.2017.8168194","DOIUrl":null,"url":null,"abstract":"Recent frameworks, such as the so-called plug-and-play, allow us to leverage the developments in image denoising to tackle other, and more involved, problems in image processing. As the name suggests, state-of-the-art denoisers are plugged into an iterative algorithm that alternates between a denoising step and the inversion of the observation operator. While these tools offer flexibility, the convergence of the resulting algorithm may be difficult to analyse. In this paper, we plug a state-of-the-art denoiser, based on a Gaussian mixture model, in the iterations of an alternating direction method of multipliers and prove the algorithm is guaranteed to converge. Moreover, we build upon the concept of scene-adapted priors where we learn a model targeted to a specific scene being imaged, and apply the proposed method to address the hyperspectral sharpening problem.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"19 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Scene-Adapted plug-and-play algorithm with convergence guarantees\",\"authors\":\"Afonso M. Teodoro, J. Bioucas-Dias, Mário A. T. Figueiredo\",\"doi\":\"10.1109/MLSP.2017.8168194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent frameworks, such as the so-called plug-and-play, allow us to leverage the developments in image denoising to tackle other, and more involved, problems in image processing. As the name suggests, state-of-the-art denoisers are plugged into an iterative algorithm that alternates between a denoising step and the inversion of the observation operator. While these tools offer flexibility, the convergence of the resulting algorithm may be difficult to analyse. In this paper, we plug a state-of-the-art denoiser, based on a Gaussian mixture model, in the iterations of an alternating direction method of multipliers and prove the algorithm is guaranteed to converge. Moreover, we build upon the concept of scene-adapted priors where we learn a model targeted to a specific scene being imaged, and apply the proposed method to address the hyperspectral sharpening problem.\",\"PeriodicalId\":6542,\"journal\":{\"name\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"19 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2017.8168194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

最近的框架,如所谓的即插即用,使我们能够利用图像去噪的发展来解决图像处理中其他更复杂的问题。顾名思义,最先进的去噪器被插入到迭代算法中,该算法在去噪步骤和观测算子的反演之间交替进行。虽然这些工具提供了灵活性,但结果算法的收敛性可能难以分析。在本文中,我们将一种基于高斯混合模型的最先进的去噪器插入到乘法器交替方向法的迭代中,并证明了该算法保证收敛。此外,我们建立了场景适应先验的概念,其中我们学习针对特定场景被成像的模型,并应用所提出的方法来解决高光谱锐化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scene-Adapted plug-and-play algorithm with convergence guarantees
Recent frameworks, such as the so-called plug-and-play, allow us to leverage the developments in image denoising to tackle other, and more involved, problems in image processing. As the name suggests, state-of-the-art denoisers are plugged into an iterative algorithm that alternates between a denoising step and the inversion of the observation operator. While these tools offer flexibility, the convergence of the resulting algorithm may be difficult to analyse. In this paper, we plug a state-of-the-art denoiser, based on a Gaussian mixture model, in the iterations of an alternating direction method of multipliers and prove the algorithm is guaranteed to converge. Moreover, we build upon the concept of scene-adapted priors where we learn a model targeted to a specific scene being imaged, and apply the proposed method to address the hyperspectral sharpening problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信