门钥匙

Joseph Noor, M. Srivastava, R. Netravali
{"title":"门钥匙","authors":"Joseph Noor, M. Srivastava, R. Netravali","doi":"10.1145/3472883.3487004","DOIUrl":null,"url":null,"abstract":"Owing to a need for low latency data accesses, emerging IoT and mobile applications commonly require distributed data stores (e.g., key-value or KV stores) to operate entirely at the network's edge. Unfortunately, existing KV stores employ randomized data placement policies (e.g., consistent hashing) that ignore the client mobility and resulting variance in client-server latencies that are inherent to edge applications---the effect is largely suboptimal and inefficient data placement. We present Portkey, a distributed KV store that dynamically adapts data placement according to time-varying client mobility and data access patterns. The key insight with Portkey is to lean into the inherent mobility and prioritize rapid but approximate placement decisions over delayed optimal ones. Doing so enables the efficient tracking of client-server latencies despite edge resource constraints, and the use of greedy placement heuristics that are self-correcting over short timescales. Results with a realistic autonomous vehicle dataset and two small-scale deployments reveal that Portkey reduces average and tail request latency by 21-82% and 26-77% compared to existing placement strategies.","PeriodicalId":91949,"journal":{"name":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Portkey\",\"authors\":\"Joseph Noor, M. Srivastava, R. Netravali\",\"doi\":\"10.1145/3472883.3487004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Owing to a need for low latency data accesses, emerging IoT and mobile applications commonly require distributed data stores (e.g., key-value or KV stores) to operate entirely at the network's edge. Unfortunately, existing KV stores employ randomized data placement policies (e.g., consistent hashing) that ignore the client mobility and resulting variance in client-server latencies that are inherent to edge applications---the effect is largely suboptimal and inefficient data placement. We present Portkey, a distributed KV store that dynamically adapts data placement according to time-varying client mobility and data access patterns. The key insight with Portkey is to lean into the inherent mobility and prioritize rapid but approximate placement decisions over delayed optimal ones. Doing so enables the efficient tracking of client-server latencies despite edge resource constraints, and the use of greedy placement heuristics that are self-correcting over short timescales. Results with a realistic autonomous vehicle dataset and two small-scale deployments reveal that Portkey reduces average and tail request latency by 21-82% and 26-77% compared to existing placement strategies.\",\"PeriodicalId\":91949,\"journal\":{\"name\":\"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3472883.3487004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3472883.3487004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Portkey
Owing to a need for low latency data accesses, emerging IoT and mobile applications commonly require distributed data stores (e.g., key-value or KV stores) to operate entirely at the network's edge. Unfortunately, existing KV stores employ randomized data placement policies (e.g., consistent hashing) that ignore the client mobility and resulting variance in client-server latencies that are inherent to edge applications---the effect is largely suboptimal and inefficient data placement. We present Portkey, a distributed KV store that dynamically adapts data placement according to time-varying client mobility and data access patterns. The key insight with Portkey is to lean into the inherent mobility and prioritize rapid but approximate placement decisions over delayed optimal ones. Doing so enables the efficient tracking of client-server latencies despite edge resource constraints, and the use of greedy placement heuristics that are self-correcting over short timescales. Results with a realistic autonomous vehicle dataset and two small-scale deployments reveal that Portkey reduces average and tail request latency by 21-82% and 26-77% compared to existing placement strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信