效率超过8%的Cu2ZnSnS4子模块,超薄吸收器

H. Sugimoto, H. Hiroi, N. Sakai, S. Muraoka, T. Katou
{"title":"效率超过8%的Cu2ZnSnS4子模块,超薄吸收器","authors":"H. Sugimoto, H. Hiroi, N. Sakai, S. Muraoka, T. Katou","doi":"10.1109/PVSC.2012.6318214","DOIUrl":null,"url":null,"abstract":"An efficiency of 8.6% on Cu2ZnSnS4 (CZTS) submodule is achieved by revising absorber formation and optimizing buffer layer thickness with the improved absorber. The CZTS submodule is fabricated by following process. Mo back electrode and metal precursor are deposited by vacuum-based processes. The CZTS absorber layer is formed through high-temperature annealing with sulfur containing gas. CdS buffer layer and ZnO window layer are then deposited by chemical bath deposition and metal-organic chemical vapor deposition, respectively. In this paper, we focus on the CZTS absorber uniformity and its thickness. Buffer thickness is also optimized. At first, performance of submodules with void-rich absorber and void-free absorber is investigated. Then, the impact of absorber thickness is investigated. We observe that thinner absorbers contribute to higher open circuit voltage whereas void-free absorbers contribute to higher fill factor. Over 8% submodule efficiency is achieved with void-free ultra-thin CZTS absorber layer with only 600 nm in thickness. Electron beam induced current (EBIC) mapping is performed to map out the distribution of current collection. The EBIC result clearly shows that the void-free and ultra-thin absorber has uniform and wide EBIC distribution. In addition, re-optimization of buffer layer thickness for the void-free and ultra-thin absorber further boosts the performance. We find that thinner CdS which lead to less absorption loss at short wavelength region works well with the void-free ultra-thin absorber. Further optimization will contribute to the development of lower cost and higher productivity CZTS fabrication process.","PeriodicalId":6318,"journal":{"name":"2012 38th IEEE Photovoltaic Specialists Conference","volume":"28 1","pages":"002997-003000"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Over 8% efficiency Cu2ZnSnS4 submodules with ultra-thin absorber\",\"authors\":\"H. Sugimoto, H. Hiroi, N. Sakai, S. Muraoka, T. Katou\",\"doi\":\"10.1109/PVSC.2012.6318214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An efficiency of 8.6% on Cu2ZnSnS4 (CZTS) submodule is achieved by revising absorber formation and optimizing buffer layer thickness with the improved absorber. The CZTS submodule is fabricated by following process. Mo back electrode and metal precursor are deposited by vacuum-based processes. The CZTS absorber layer is formed through high-temperature annealing with sulfur containing gas. CdS buffer layer and ZnO window layer are then deposited by chemical bath deposition and metal-organic chemical vapor deposition, respectively. In this paper, we focus on the CZTS absorber uniformity and its thickness. Buffer thickness is also optimized. At first, performance of submodules with void-rich absorber and void-free absorber is investigated. Then, the impact of absorber thickness is investigated. We observe that thinner absorbers contribute to higher open circuit voltage whereas void-free absorbers contribute to higher fill factor. Over 8% submodule efficiency is achieved with void-free ultra-thin CZTS absorber layer with only 600 nm in thickness. Electron beam induced current (EBIC) mapping is performed to map out the distribution of current collection. The EBIC result clearly shows that the void-free and ultra-thin absorber has uniform and wide EBIC distribution. In addition, re-optimization of buffer layer thickness for the void-free and ultra-thin absorber further boosts the performance. We find that thinner CdS which lead to less absorption loss at short wavelength region works well with the void-free ultra-thin absorber. Further optimization will contribute to the development of lower cost and higher productivity CZTS fabrication process.\",\"PeriodicalId\":6318,\"journal\":{\"name\":\"2012 38th IEEE Photovoltaic Specialists Conference\",\"volume\":\"28 1\",\"pages\":\"002997-003000\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 38th IEEE Photovoltaic Specialists Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2012.6318214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 38th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2012.6318214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

改进后的吸收体结构,优化缓冲层厚度,对Cu2ZnSnS4 (CZTS)子模块的效率达到8.6%。CZTS子模块的制作过程如下:采用真空法制备Mo背电极和金属前驱体。CZTS吸收层是用含硫气体高温退火形成的。然后分别采用化学浴沉积法和金属有机化学气相沉积法沉积CdS缓冲层和ZnO窗口层。本文主要研究了CZTS吸收体的均匀性及其厚度。缓冲厚度也进行了优化。首先,研究了富空隙吸收器和无空隙吸收器子模块的性能。然后,研究了吸波器厚度的影响。我们观察到,更薄的吸收剂有助于更高的开路电压,而无空隙吸收剂有助于更高的填充系数。采用厚度仅为600纳米的无空隙超薄CZTS吸收层,可实现超过8%的子模块效率。通过电子束感应电流(EBIC)作图来绘制电流集的分布。EBIC结果清楚地表明,无空隙超薄吸收剂具有均匀而宽阔的EBIC分布。此外,对无空隙超薄吸收体的缓冲层厚度进行了重新优化,进一步提高了性能。我们发现,更薄的CdS在短波长区域吸收损失更小,可以很好地与无空隙超薄吸收体配合使用。进一步的优化将有助于开发低成本、高生产率的CZTS制造工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Over 8% efficiency Cu2ZnSnS4 submodules with ultra-thin absorber
An efficiency of 8.6% on Cu2ZnSnS4 (CZTS) submodule is achieved by revising absorber formation and optimizing buffer layer thickness with the improved absorber. The CZTS submodule is fabricated by following process. Mo back electrode and metal precursor are deposited by vacuum-based processes. The CZTS absorber layer is formed through high-temperature annealing with sulfur containing gas. CdS buffer layer and ZnO window layer are then deposited by chemical bath deposition and metal-organic chemical vapor deposition, respectively. In this paper, we focus on the CZTS absorber uniformity and its thickness. Buffer thickness is also optimized. At first, performance of submodules with void-rich absorber and void-free absorber is investigated. Then, the impact of absorber thickness is investigated. We observe that thinner absorbers contribute to higher open circuit voltage whereas void-free absorbers contribute to higher fill factor. Over 8% submodule efficiency is achieved with void-free ultra-thin CZTS absorber layer with only 600 nm in thickness. Electron beam induced current (EBIC) mapping is performed to map out the distribution of current collection. The EBIC result clearly shows that the void-free and ultra-thin absorber has uniform and wide EBIC distribution. In addition, re-optimization of buffer layer thickness for the void-free and ultra-thin absorber further boosts the performance. We find that thinner CdS which lead to less absorption loss at short wavelength region works well with the void-free ultra-thin absorber. Further optimization will contribute to the development of lower cost and higher productivity CZTS fabrication process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信