基于hadoop的数据湖中的自动化生物信息学数据集成

Julia Colleoni Couto, Olimar Teixeira Borges, Duncan Dubugras Ruiz
{"title":"基于hadoop的数据湖中的自动化生物信息学数据集成","authors":"Julia Colleoni Couto, Olimar Teixeira Borges, Duncan Dubugras Ruiz","doi":"10.5121/csit.2022.120912","DOIUrl":null,"url":null,"abstract":"When we work in a data lake, data integration is not easy, mainly because the data is usually stored in raw format. Manually performing data integration is a time-consuming task that requires the supervision of a specialist, which can make mistakes or not be able to see the optimal point for data integration among two or more datasets. This paper presents a model to perform heterogeneous in-memory data integration in a Hadoop-based data lake based on a top-k set similarity approach. Our main contribution is the process of ingesting, storing, processing, integrating, and visualizing the data integration points. The algorithm for data integration is based on the Overlap coefficient since it presented better results when compared with the set similarity metrics Jaccard, Sørensen-Dice, and the Tversky index. We tested our model applying it on eight bioinformatics-domain datasets. Our model presents better results when compared to an analysis of a specialist, and we expect our model can be reused for other domains of datasets.","PeriodicalId":91205,"journal":{"name":"Artificial intelligence and applications (Commerce, Calif.)","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automatized Bioinformatics Data Integration in a Hadoop-based Data Lake\",\"authors\":\"Julia Colleoni Couto, Olimar Teixeira Borges, Duncan Dubugras Ruiz\",\"doi\":\"10.5121/csit.2022.120912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When we work in a data lake, data integration is not easy, mainly because the data is usually stored in raw format. Manually performing data integration is a time-consuming task that requires the supervision of a specialist, which can make mistakes or not be able to see the optimal point for data integration among two or more datasets. This paper presents a model to perform heterogeneous in-memory data integration in a Hadoop-based data lake based on a top-k set similarity approach. Our main contribution is the process of ingesting, storing, processing, integrating, and visualizing the data integration points. The algorithm for data integration is based on the Overlap coefficient since it presented better results when compared with the set similarity metrics Jaccard, Sørensen-Dice, and the Tversky index. We tested our model applying it on eight bioinformatics-domain datasets. Our model presents better results when compared to an analysis of a specialist, and we expect our model can be reused for other domains of datasets.\",\"PeriodicalId\":91205,\"journal\":{\"name\":\"Artificial intelligence and applications (Commerce, Calif.)\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence and applications (Commerce, Calif.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2022.120912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence and applications (Commerce, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2022.120912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

当我们在数据湖中工作时,数据集成并不容易,主要是因为数据通常以原始格式存储。手动执行数据集成是一项耗时的任务,需要专家的监督,专家可能会犯错误,或者无法看到两个或多个数据集之间数据集成的最佳点。提出了一种基于top-k集相似度的hadoop数据湖异构内存数据集成模型。我们的主要贡献是摄取、存储、处理、集成和可视化数据集成点的过程。与Jaccard、Sørensen-Dice和Tversky index等集合相似度指标相比,基于重叠系数的数据集成算法具有更好的结果。我们在八个生物信息学领域的数据集上测试了我们的模型。与专家的分析相比,我们的模型呈现出更好的结果,我们希望我们的模型可以被重用于其他领域的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatized Bioinformatics Data Integration in a Hadoop-based Data Lake
When we work in a data lake, data integration is not easy, mainly because the data is usually stored in raw format. Manually performing data integration is a time-consuming task that requires the supervision of a specialist, which can make mistakes or not be able to see the optimal point for data integration among two or more datasets. This paper presents a model to perform heterogeneous in-memory data integration in a Hadoop-based data lake based on a top-k set similarity approach. Our main contribution is the process of ingesting, storing, processing, integrating, and visualizing the data integration points. The algorithm for data integration is based on the Overlap coefficient since it presented better results when compared with the set similarity metrics Jaccard, Sørensen-Dice, and the Tversky index. We tested our model applying it on eight bioinformatics-domain datasets. Our model presents better results when compared to an analysis of a specialist, and we expect our model can be reused for other domains of datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信