长聚球菌PCC7942代谢的大规模网络连通性

J. Triana-Dopico, J. Founes-Merchan, L. Garces-Villon, Nadia Mendieta-Villalba, Tania Rojas-Parraga, F. Terán-Alvarado
{"title":"长聚球菌PCC7942代谢的大规模网络连通性","authors":"J. Triana-Dopico, J. Founes-Merchan, L. Garces-Villon, Nadia Mendieta-Villalba, Tania Rojas-Parraga, F. Terán-Alvarado","doi":"10.1109/ETCM.2016.7750841","DOIUrl":null,"url":null,"abstract":"From the topological perspective, the availability of genome-scale metabolic network models assists to the large-scale analysis of the metabolites connections, and thus, the evaluation of the cell metabolic capabilities to produce high added-value molecules. In this study, a comprehensive connectivity analysis of the published genome-scale metabolic model of Synechococcus elongatus PCC7942 (iSyf715) is presented, highlighting the most connected metabolites of this biological system. To get a suitable fit, the connectivity distribution of the metabolic model is evaluated using the cumulative distribution function (Pareto's law), verifying a power-law distribution in iSyf715 metabolic network (3=2.203). Additionally, through the comparison of the connectivity distributions in different microbial metabolic network models, the scale-free behavior of these metabolic networks is verified. The prediction of the metabolic network connectivity could supports the determination of the underlying functioning principles of certain cellular processes.","PeriodicalId":6480,"journal":{"name":"2016 IEEE Ecuador Technical Chapters Meeting (ETCM)","volume":"42 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-scale network connectivity of Synechococcus elongatus PCC7942 metabolism\",\"authors\":\"J. Triana-Dopico, J. Founes-Merchan, L. Garces-Villon, Nadia Mendieta-Villalba, Tania Rojas-Parraga, F. Terán-Alvarado\",\"doi\":\"10.1109/ETCM.2016.7750841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"From the topological perspective, the availability of genome-scale metabolic network models assists to the large-scale analysis of the metabolites connections, and thus, the evaluation of the cell metabolic capabilities to produce high added-value molecules. In this study, a comprehensive connectivity analysis of the published genome-scale metabolic model of Synechococcus elongatus PCC7942 (iSyf715) is presented, highlighting the most connected metabolites of this biological system. To get a suitable fit, the connectivity distribution of the metabolic model is evaluated using the cumulative distribution function (Pareto's law), verifying a power-law distribution in iSyf715 metabolic network (3=2.203). Additionally, through the comparison of the connectivity distributions in different microbial metabolic network models, the scale-free behavior of these metabolic networks is verified. The prediction of the metabolic network connectivity could supports the determination of the underlying functioning principles of certain cellular processes.\",\"PeriodicalId\":6480,\"journal\":{\"name\":\"2016 IEEE Ecuador Technical Chapters Meeting (ETCM)\",\"volume\":\"42 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Ecuador Technical Chapters Meeting (ETCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETCM.2016.7750841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Ecuador Technical Chapters Meeting (ETCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETCM.2016.7750841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从拓拓学的角度来看,基因组尺度代谢网络模型的可用性有助于对代谢物连接的大规模分析,从而评估细胞代谢能力以产生高附加值分子。本研究对已发表的长聚球菌PCC7942 (iSyf715)基因组尺度代谢模型进行了全面的连通性分析,突出了该生物系统中联系最紧密的代谢物。为了获得合适的拟合,利用累积分布函数(Pareto定律)对代谢模型的连性分布进行评估,验证iSyf715代谢网络中的幂律分布(3=2.203)。此外,通过比较不同微生物代谢网络模型的连通性分布,验证了这些代谢网络的无标度行为。代谢网络连通性的预测可以支持确定某些细胞过程的潜在功能原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-scale network connectivity of Synechococcus elongatus PCC7942 metabolism
From the topological perspective, the availability of genome-scale metabolic network models assists to the large-scale analysis of the metabolites connections, and thus, the evaluation of the cell metabolic capabilities to produce high added-value molecules. In this study, a comprehensive connectivity analysis of the published genome-scale metabolic model of Synechococcus elongatus PCC7942 (iSyf715) is presented, highlighting the most connected metabolites of this biological system. To get a suitable fit, the connectivity distribution of the metabolic model is evaluated using the cumulative distribution function (Pareto's law), verifying a power-law distribution in iSyf715 metabolic network (3=2.203). Additionally, through the comparison of the connectivity distributions in different microbial metabolic network models, the scale-free behavior of these metabolic networks is verified. The prediction of the metabolic network connectivity could supports the determination of the underlying functioning principles of certain cellular processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信