{"title":"高维数据流上高效的位置敏感哈希","authors":"Chengcheng Yang, Dong Deng, Shuo Shang, Ling Shao","doi":"10.1109/ICDE48307.2020.00220","DOIUrl":null,"url":null,"abstract":"Approximate Nearest Neighbor (ANN) search in high-dimensional space is a fundamental task in many applications. Locality-Sensitive Hashing (LSH) is a well-known methodology to solve the ANN problem with theoretical guarantees and empirical performance. We observe that existing LSH-based approaches target at the problem of designing search optimized indexes, which require a number of separate indexes and high index maintenance overhead, and hence impractical for high-dimensional streaming data processing. In this paper, we present PDA-LSH, a novel and practical disk-based LSH index that can offer efficient support for both updates and searches. Experiments on real-world datasets show that our proposal outperforms the state-of-the-art schemes by up to 10× on update performance and up to 2× on search performance.","PeriodicalId":6709,"journal":{"name":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","volume":"65 2 1","pages":"1986-1989"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Efficient Locality-Sensitive Hashing Over High-Dimensional Data Streams\",\"authors\":\"Chengcheng Yang, Dong Deng, Shuo Shang, Ling Shao\",\"doi\":\"10.1109/ICDE48307.2020.00220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximate Nearest Neighbor (ANN) search in high-dimensional space is a fundamental task in many applications. Locality-Sensitive Hashing (LSH) is a well-known methodology to solve the ANN problem with theoretical guarantees and empirical performance. We observe that existing LSH-based approaches target at the problem of designing search optimized indexes, which require a number of separate indexes and high index maintenance overhead, and hence impractical for high-dimensional streaming data processing. In this paper, we present PDA-LSH, a novel and practical disk-based LSH index that can offer efficient support for both updates and searches. Experiments on real-world datasets show that our proposal outperforms the state-of-the-art schemes by up to 10× on update performance and up to 2× on search performance.\",\"PeriodicalId\":6709,\"journal\":{\"name\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"volume\":\"65 2 1\",\"pages\":\"1986-1989\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 36th International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE48307.2020.00220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 36th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE48307.2020.00220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient Locality-Sensitive Hashing Over High-Dimensional Data Streams
Approximate Nearest Neighbor (ANN) search in high-dimensional space is a fundamental task in many applications. Locality-Sensitive Hashing (LSH) is a well-known methodology to solve the ANN problem with theoretical guarantees and empirical performance. We observe that existing LSH-based approaches target at the problem of designing search optimized indexes, which require a number of separate indexes and high index maintenance overhead, and hence impractical for high-dimensional streaming data processing. In this paper, we present PDA-LSH, a novel and practical disk-based LSH index that can offer efficient support for both updates and searches. Experiments on real-world datasets show that our proposal outperforms the state-of-the-art schemes by up to 10× on update performance and up to 2× on search performance.