{"title":"锂离子电池用掺镍LiMn2O4阴极纳米颗粒的燃烧合成与表征","authors":"A. Deepi, G. Srikesh, A. S. Nesaraj","doi":"10.1590/S1517-707620210001.1231","DOIUrl":null,"url":null,"abstract":"In this research work, fine powders of spinel-type LiMn2-xNixO4-δ (where x = 0.1, 0.2, 0.3, 0.4 and 0.5) as cathode materials for lithium ion batteries were synthesized by combustion synthesis using urea as fuel and metal nitrates as oxidizers at a temperature of 600°C. The physiochemical properties of the prepared cathode materials were investigated by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), particle size analysis, energy dispersive analysis (EDAX) and scanning electron microscopy (SEM). The electrochemical characteristics were studied by impedance spectroscopy. It was found that the physical charactetertistics were moderately influenced because of different dopant (Ni) concentration. Among the samples studied, LiMn1.9Ni0.1O4-δ resulted in better electrical conductivity (6.49 x 10-5 Scm-1) at room temperature and hence it may be suitable for lithium ion battery applications. Keywords:Ni doped LiMn2O4, physical characterization, lithium ion battery application","PeriodicalId":18260,"journal":{"name":"Materia-rio De Janeiro","volume":"12 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Combustion synthesis and characterization of Ni-doped LiMn2O4 cathode nanoparticles for lithium ion battery applications\",\"authors\":\"A. Deepi, G. Srikesh, A. S. Nesaraj\",\"doi\":\"10.1590/S1517-707620210001.1231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research work, fine powders of spinel-type LiMn2-xNixO4-δ (where x = 0.1, 0.2, 0.3, 0.4 and 0.5) as cathode materials for lithium ion batteries were synthesized by combustion synthesis using urea as fuel and metal nitrates as oxidizers at a temperature of 600°C. The physiochemical properties of the prepared cathode materials were investigated by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), particle size analysis, energy dispersive analysis (EDAX) and scanning electron microscopy (SEM). The electrochemical characteristics were studied by impedance spectroscopy. It was found that the physical charactetertistics were moderately influenced because of different dopant (Ni) concentration. Among the samples studied, LiMn1.9Ni0.1O4-δ resulted in better electrical conductivity (6.49 x 10-5 Scm-1) at room temperature and hence it may be suitable for lithium ion battery applications. Keywords:Ni doped LiMn2O4, physical characterization, lithium ion battery application\",\"PeriodicalId\":18260,\"journal\":{\"name\":\"Materia-rio De Janeiro\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materia-rio De Janeiro\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1590/S1517-707620210001.1231\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materia-rio De Janeiro","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1590/S1517-707620210001.1231","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
摘要
本研究以尿素为燃料,金属硝酸盐为氧化剂,在600℃的温度下,采用燃烧合成的方法合成了尖晶石型LiMn2-xNixO4-δ (x = 0.1, 0.2, 0.3, 0.4和0.5)细粉末作为锂离子电池正极材料。采用x射线衍射(XRD)、傅里叶红外光谱(FTIR)、粒度分析、能谱分析(EDAX)和扫描电镜(SEM)对制备的正极材料的理化性质进行了表征。用阻抗谱法研究了其电化学特性。结果表明,不同掺杂剂(Ni)浓度对其物理特性有一定影响。在所研究的样品中,LiMn1.9Ni0.1O4-δ在室温下具有更好的电导率(6.49 x 10-5 cm-1),因此可能适合锂离子电池应用。关键词:Ni掺杂LiMn2O4,物理表征,锂离子电池应用
Combustion synthesis and characterization of Ni-doped LiMn2O4 cathode nanoparticles for lithium ion battery applications
In this research work, fine powders of spinel-type LiMn2-xNixO4-δ (where x = 0.1, 0.2, 0.3, 0.4 and 0.5) as cathode materials for lithium ion batteries were synthesized by combustion synthesis using urea as fuel and metal nitrates as oxidizers at a temperature of 600°C. The physiochemical properties of the prepared cathode materials were investigated by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), particle size analysis, energy dispersive analysis (EDAX) and scanning electron microscopy (SEM). The electrochemical characteristics were studied by impedance spectroscopy. It was found that the physical charactetertistics were moderately influenced because of different dopant (Ni) concentration. Among the samples studied, LiMn1.9Ni0.1O4-δ resulted in better electrical conductivity (6.49 x 10-5 Scm-1) at room temperature and hence it may be suitable for lithium ion battery applications. Keywords:Ni doped LiMn2O4, physical characterization, lithium ion battery application
期刊介绍:
All the articles are submitted to a careful peer-reviewing evaluation process by the journal''s Editorial Board. The Editorial Board, reviewers and authors make use of a web based proprietary automated tool to deal with the reviewing procedures.the Revista Matéria''s article reviewing restricted access system - SEER. Authors are not informed about the identity of the reviewers.