公平评分的混合数据分析技术

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
T. Banditwattanawong, A. Jankasem, Masawee Masdisornchote
{"title":"公平评分的混合数据分析技术","authors":"T. Banditwattanawong, A. Jankasem, Masawee Masdisornchote","doi":"10.1108/dta-01-2022-0047","DOIUrl":null,"url":null,"abstract":"PurposeFair grading produces learning ability levels that are understandable and acceptable to both learners and instructors. Norm-referenced grading can be achieved by several means such as z score, K-means and a heuristic. However, these methods typically deliver the varied degrees of grading fairness depending on input score data.Design/methodology/approachTo attain the fairest grading, this paper proposes a hybrid algorithm that integrates z score, K-means and heuristic methods with a novel fairness objective function as a decision function.FindingsDepending on an experimented data set, each of the algorithm's constituent methods could deliver the fairest grading results with fairness degrees ranging from 0.110 to 0.646. We also pointed out key factors in the fairness improvement of norm-referenced achievement grading.Originality/valueThe main contributions of this paper are four folds: the definition of fair norm-referenced grading requirements, a hybrid algorithm for fair norm-referenced grading, a fairness metric for norm-referenced grading and the fairness performance results of the statistical, heuristic and machine learning methods.","PeriodicalId":56156,"journal":{"name":"Data Technologies and Applications","volume":"34 1","pages":"18-31"},"PeriodicalIF":1.7000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid data analytic technique for grading fairness\",\"authors\":\"T. Banditwattanawong, A. Jankasem, Masawee Masdisornchote\",\"doi\":\"10.1108/dta-01-2022-0047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeFair grading produces learning ability levels that are understandable and acceptable to both learners and instructors. Norm-referenced grading can be achieved by several means such as z score, K-means and a heuristic. However, these methods typically deliver the varied degrees of grading fairness depending on input score data.Design/methodology/approachTo attain the fairest grading, this paper proposes a hybrid algorithm that integrates z score, K-means and heuristic methods with a novel fairness objective function as a decision function.FindingsDepending on an experimented data set, each of the algorithm's constituent methods could deliver the fairest grading results with fairness degrees ranging from 0.110 to 0.646. We also pointed out key factors in the fairness improvement of norm-referenced achievement grading.Originality/valueThe main contributions of this paper are four folds: the definition of fair norm-referenced grading requirements, a hybrid algorithm for fair norm-referenced grading, a fairness metric for norm-referenced grading and the fairness performance results of the statistical, heuristic and machine learning methods.\",\"PeriodicalId\":56156,\"journal\":{\"name\":\"Data Technologies and Applications\",\"volume\":\"34 1\",\"pages\":\"18-31\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Technologies and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/dta-01-2022-0047\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Technologies and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/dta-01-2022-0047","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的:公平的评分产生学习者和教师都能理解和接受的学习能力水平。标准参照评分可以通过z分数、k均值和启发式等几种方法来实现。然而,这些方法通常根据输入的分数数据提供不同程度的评分公平性。设计/方法/方法为了实现最公平的评分,本文提出了一种混合算法,该算法将z分数、k均值和启发式方法相结合,并以一种新的公平目标函数作为决策函数。根据实验数据集的不同,每个算法的组成方法都能给出最公平的评分结果,公平度在0.110到0.646之间。本文还指出了提高标准参照成绩评分公平性的关键因素。本文的主要贡献有四个方面:公平标准参考评分要求的定义、公平标准参考评分的混合算法、公平标准参考评分的度量以及统计、启发式和机器学习方法的公平性能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid data analytic technique for grading fairness
PurposeFair grading produces learning ability levels that are understandable and acceptable to both learners and instructors. Norm-referenced grading can be achieved by several means such as z score, K-means and a heuristic. However, these methods typically deliver the varied degrees of grading fairness depending on input score data.Design/methodology/approachTo attain the fairest grading, this paper proposes a hybrid algorithm that integrates z score, K-means and heuristic methods with a novel fairness objective function as a decision function.FindingsDepending on an experimented data set, each of the algorithm's constituent methods could deliver the fairest grading results with fairness degrees ranging from 0.110 to 0.646. We also pointed out key factors in the fairness improvement of norm-referenced achievement grading.Originality/valueThe main contributions of this paper are four folds: the definition of fair norm-referenced grading requirements, a hybrid algorithm for fair norm-referenced grading, a fairness metric for norm-referenced grading and the fairness performance results of the statistical, heuristic and machine learning methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data Technologies and Applications
Data Technologies and Applications Social Sciences-Library and Information Sciences
CiteScore
3.80
自引率
6.20%
发文量
29
期刊介绍: Previously published as: Program Online from: 2018 Subject Area: Information & Knowledge Management, Library Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信