基于人脸图像组合和对数变换的优化生物识别系统

C. SateeshKumarH, B. RajaK, R. VenugopalK.
{"title":"基于人脸图像组合和对数变换的优化生物识别系统","authors":"C. SateeshKumarH, B. RajaK, R. VenugopalK.","doi":"10.5121/SIPIJ.2016.7204","DOIUrl":null,"url":null,"abstract":"The biometrics are used to identify a person effectively. In this paper, we propose optimised Face recognition system based on log transformation and combination of face image features vectors. The face images are preprocessed using Gaussian filter to enhance the quality of an image. The log transformation is applied on enhanced image to generate features. The feature vectors of many images of a single person image are converted into single vector using average arithmetic addition. The Euclidian distance(ED) is used to compare test image feature vector with database feature vectors to identify a person. It is experimented that, the performance of proposed algorithm is better compared to existing algorithms.","PeriodicalId":90726,"journal":{"name":"Signal and image processing : an international journal","volume":"20 1","pages":"57-72"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized Biometric System Based on Combination of Face Images and Log Transformation\",\"authors\":\"C. SateeshKumarH, B. RajaK, R. VenugopalK.\",\"doi\":\"10.5121/SIPIJ.2016.7204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The biometrics are used to identify a person effectively. In this paper, we propose optimised Face recognition system based on log transformation and combination of face image features vectors. The face images are preprocessed using Gaussian filter to enhance the quality of an image. The log transformation is applied on enhanced image to generate features. The feature vectors of many images of a single person image are converted into single vector using average arithmetic addition. The Euclidian distance(ED) is used to compare test image feature vector with database feature vectors to identify a person. It is experimented that, the performance of proposed algorithm is better compared to existing algorithms.\",\"PeriodicalId\":90726,\"journal\":{\"name\":\"Signal and image processing : an international journal\",\"volume\":\"20 1\",\"pages\":\"57-72\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal and image processing : an international journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/SIPIJ.2016.7204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal and image processing : an international journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/SIPIJ.2016.7204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物特征被用来有效地识别一个人。本文提出了一种基于对数变换和人脸图像特征向量组合的优化人脸识别系统。对人脸图像进行高斯滤波预处理,提高图像质量。对增强图像进行对数变换,生成特征。利用平均算术加法将单幅人物图像的多幅图像的特征向量转换为单个向量。利用欧几里得距离(ED)将测试图像的特征向量与数据库的特征向量进行比较,从而识别出一个人。实验结果表明,该算法的性能优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized Biometric System Based on Combination of Face Images and Log Transformation
The biometrics are used to identify a person effectively. In this paper, we propose optimised Face recognition system based on log transformation and combination of face image features vectors. The face images are preprocessed using Gaussian filter to enhance the quality of an image. The log transformation is applied on enhanced image to generate features. The feature vectors of many images of a single person image are converted into single vector using average arithmetic addition. The Euclidian distance(ED) is used to compare test image feature vector with database feature vectors to identify a person. It is experimented that, the performance of proposed algorithm is better compared to existing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信