优化效率的感应环节数学建模

Hussnain Ali, T. J. Ahmad, S. Khan
{"title":"优化效率的感应环节数学建模","authors":"Hussnain Ali, T. J. Ahmad, S. Khan","doi":"10.1109/ISIEA.2009.5356338","DOIUrl":null,"url":null,"abstract":"Design of an optimized RF transcutaneous link through inductive coils is an arduous design process which involves complex mathematical modeling to search for optimized design parameters. This paper presents a generalized model which encompasses all possible voltage driven circuit realizations of an inductive link and presents a comparison on the bases of link efficiency and voltage gain. Mathematical expressions for the generalized voltage driven model as well as for the equivalent circuit topologies are derived. Moreover effect of different parameters such as resonating impedances on the final relationships is exhaustively analyzed. Optimization is a critical aspect in designing inductive links for medical implants since the link virtually acts as an air-core transformer with relatively low mutual coupling. Therefore, in order to maximize the gain and improve the link efficiency it is very necessary to design the link on optimized parameters. Aim of the analysis is to facilitate the designers in their design process as mathematical relationships for different models and their comparison has never been reported earlier in literature.","PeriodicalId":6447,"journal":{"name":"2009 IEEE Symposium on Industrial Electronics & Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Mathematical modeling of an inductive link for optimizing efficiency\",\"authors\":\"Hussnain Ali, T. J. Ahmad, S. Khan\",\"doi\":\"10.1109/ISIEA.2009.5356338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Design of an optimized RF transcutaneous link through inductive coils is an arduous design process which involves complex mathematical modeling to search for optimized design parameters. This paper presents a generalized model which encompasses all possible voltage driven circuit realizations of an inductive link and presents a comparison on the bases of link efficiency and voltage gain. Mathematical expressions for the generalized voltage driven model as well as for the equivalent circuit topologies are derived. Moreover effect of different parameters such as resonating impedances on the final relationships is exhaustively analyzed. Optimization is a critical aspect in designing inductive links for medical implants since the link virtually acts as an air-core transformer with relatively low mutual coupling. Therefore, in order to maximize the gain and improve the link efficiency it is very necessary to design the link on optimized parameters. Aim of the analysis is to facilitate the designers in their design process as mathematical relationships for different models and their comparison has never been reported earlier in literature.\",\"PeriodicalId\":6447,\"journal\":{\"name\":\"2009 IEEE Symposium on Industrial Electronics & Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Industrial Electronics & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIEA.2009.5356338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Industrial Electronics & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIEA.2009.5356338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

通过感应线圈的射频经皮环的优化设计是一个艰巨的设计过程,需要建立复杂的数学模型来寻找优化的设计参数。本文提出了一个广义模型,该模型包含了所有可能的电压驱动电路实现,并在链路效率和电压增益的基础上进行了比较。推导了广义电压驱动模型和等效电路拓扑的数学表达式。此外,还详尽地分析了谐振阻抗等参数对最终关系的影响。优化是设计医疗植入物电感链路的关键方面,因为该链路实际上是一个相互耦合相对较低的空芯变压器。因此,为了使增益最大化,提高链路效率,有必要根据优化后的参数对链路进行设计。分析的目的是为了方便设计师在他们的设计过程中,因为不同模型的数学关系和他们的比较从未在文献中报道过。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical modeling of an inductive link for optimizing efficiency
Design of an optimized RF transcutaneous link through inductive coils is an arduous design process which involves complex mathematical modeling to search for optimized design parameters. This paper presents a generalized model which encompasses all possible voltage driven circuit realizations of an inductive link and presents a comparison on the bases of link efficiency and voltage gain. Mathematical expressions for the generalized voltage driven model as well as for the equivalent circuit topologies are derived. Moreover effect of different parameters such as resonating impedances on the final relationships is exhaustively analyzed. Optimization is a critical aspect in designing inductive links for medical implants since the link virtually acts as an air-core transformer with relatively low mutual coupling. Therefore, in order to maximize the gain and improve the link efficiency it is very necessary to design the link on optimized parameters. Aim of the analysis is to facilitate the designers in their design process as mathematical relationships for different models and their comparison has never been reported earlier in literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信