基于变换的张量自回归多线性时间序列预测

Jackson Cates, R. Hoover, Kyle A. Caudle, Riley Kopp, Cagri Ozdemir
{"title":"基于变换的张量自回归多线性时间序列预测","authors":"Jackson Cates, R. Hoover, Kyle A. Caudle, Riley Kopp, Cagri Ozdemir","doi":"10.1109/ICMLA52953.2021.00078","DOIUrl":null,"url":null,"abstract":"With the massive influx of 2-dimensional observational data, new methods for analyzing, modeling, and forecasting multidimensional data need to be developed. The current research aims to accomplish these goals through the intersection of time-series modeling and multi-linear algebraic systems. In particular, the current research, aptly named the $\\mathcal{L}$-Transform Tensor Auto-Regressive ($\\mathcal{L}$-TAR for short) model expands previous auto-regressive techniques to forecast data from multilinear observations as oppose to scalars or vectors. The approach is based on recent developments in tensor decompositions and multilinear tensor products. Transforming the multilinear data through invertible discrete linear transforms enables statistical Independence between observations. As such, can be reformulated to a collection of vector auto-regression problems for model learning. Experimental results are provided on benchmark datasets containing image collections, video sequences, sea surface temperature measurements, and stock closing prices.","PeriodicalId":6750,"journal":{"name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"29 1","pages":"461-466"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Transform-Based Tensor Auto Regression for Multilinear Time Series Forecasting\",\"authors\":\"Jackson Cates, R. Hoover, Kyle A. Caudle, Riley Kopp, Cagri Ozdemir\",\"doi\":\"10.1109/ICMLA52953.2021.00078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the massive influx of 2-dimensional observational data, new methods for analyzing, modeling, and forecasting multidimensional data need to be developed. The current research aims to accomplish these goals through the intersection of time-series modeling and multi-linear algebraic systems. In particular, the current research, aptly named the $\\\\mathcal{L}$-Transform Tensor Auto-Regressive ($\\\\mathcal{L}$-TAR for short) model expands previous auto-regressive techniques to forecast data from multilinear observations as oppose to scalars or vectors. The approach is based on recent developments in tensor decompositions and multilinear tensor products. Transforming the multilinear data through invertible discrete linear transforms enables statistical Independence between observations. As such, can be reformulated to a collection of vector auto-regression problems for model learning. Experimental results are provided on benchmark datasets containing image collections, video sequences, sea surface temperature measurements, and stock closing prices.\",\"PeriodicalId\":6750,\"journal\":{\"name\":\"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"29 1\",\"pages\":\"461-466\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA52953.2021.00078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA52953.2021.00078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着二维观测数据的大量涌入,需要开发新的分析、建模和预测多维数据的方法。当前的研究旨在通过时间序列建模和多线性代数系统的交叉来实现这些目标。特别是,目前的研究,恰当地命名为$\mathcal{L}$-变换张量自回归(简称$\mathcal{L}$-TAR)模型扩展了以前的自回归技术,以预测来自多线性观测的数据,而不是标量或向量。该方法基于张量分解和多线性张量积的最新发展。通过可逆离散线性变换变换多元线性数据,使观测值之间具有统计独立性。因此,可以将其重新表述为用于模型学习的向量自回归问题的集合。实验结果提供了基准数据集,包括图像收集,视频序列,海面温度测量,和股票收盘价格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transform-Based Tensor Auto Regression for Multilinear Time Series Forecasting
With the massive influx of 2-dimensional observational data, new methods for analyzing, modeling, and forecasting multidimensional data need to be developed. The current research aims to accomplish these goals through the intersection of time-series modeling and multi-linear algebraic systems. In particular, the current research, aptly named the $\mathcal{L}$-Transform Tensor Auto-Regressive ($\mathcal{L}$-TAR for short) model expands previous auto-regressive techniques to forecast data from multilinear observations as oppose to scalars or vectors. The approach is based on recent developments in tensor decompositions and multilinear tensor products. Transforming the multilinear data through invertible discrete linear transforms enables statistical Independence between observations. As such, can be reformulated to a collection of vector auto-regression problems for model learning. Experimental results are provided on benchmark datasets containing image collections, video sequences, sea surface temperature measurements, and stock closing prices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信