零阶Slepian基的时频紧性在工程中的应用

Zuwen Sun, N. Baddour
{"title":"零阶Slepian基的时频紧性在工程中的应用","authors":"Zuwen Sun, N. Baddour","doi":"10.3390/computation11060116","DOIUrl":null,"url":null,"abstract":"Time and frequency concentrations of waveforms are often of interest in engineering applications. The Slepian basis of order zero is an index-limited (finite) vector that is known to be optimally concentrated in the frequency domain. This paper proposes a method of mapping the index-limited Slepian basis to a discrete-time vector, hence obtaining a time-limited, discrete-time Slepian basis that is optimally concentrated in frequency. The main result of this note is to demonstrate that the (discrete-time) Slepian basis achieves minimum time-bandwidth compactness under certain conditions. We distinguish between the characteristic (effective) time/bandwidth of the Slepians and their defining time/bandwidth (the time and bandwidth parameters used to generate the Slepian basis). Using two different definitions of effective time and bandwidth of a signal, we show that when the defining time-bandwidth product of the Slepian basis increases, its effective time-bandwidth product tends to a minimum value. This implies that not only are the zeroth order Slepian bases known to be optimally time-limited and band-concentrated basis vectors, but also as their defining time-bandwidth products increase, their effective time-bandwidth properties approach the known minimum compactness allowed by the uncertainty principle. Conclusions are also drawn about the smallest defining time-bandwidth parameters to reach the minimum possible compactness. These conclusions give guidance for applications where the time-bandwidth product is free to be selected and hence may be selected to achieve minimum compactness.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"96 1","pages":"116"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Time Frequency Compactness of the Slepian Basis of Order Zero for Engineering Applications\",\"authors\":\"Zuwen Sun, N. Baddour\",\"doi\":\"10.3390/computation11060116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time and frequency concentrations of waveforms are often of interest in engineering applications. The Slepian basis of order zero is an index-limited (finite) vector that is known to be optimally concentrated in the frequency domain. This paper proposes a method of mapping the index-limited Slepian basis to a discrete-time vector, hence obtaining a time-limited, discrete-time Slepian basis that is optimally concentrated in frequency. The main result of this note is to demonstrate that the (discrete-time) Slepian basis achieves minimum time-bandwidth compactness under certain conditions. We distinguish between the characteristic (effective) time/bandwidth of the Slepians and their defining time/bandwidth (the time and bandwidth parameters used to generate the Slepian basis). Using two different definitions of effective time and bandwidth of a signal, we show that when the defining time-bandwidth product of the Slepian basis increases, its effective time-bandwidth product tends to a minimum value. This implies that not only are the zeroth order Slepian bases known to be optimally time-limited and band-concentrated basis vectors, but also as their defining time-bandwidth products increase, their effective time-bandwidth properties approach the known minimum compactness allowed by the uncertainty principle. Conclusions are also drawn about the smallest defining time-bandwidth parameters to reach the minimum possible compactness. These conclusions give guidance for applications where the time-bandwidth product is free to be selected and hence may be selected to achieve minimum compactness.\",\"PeriodicalId\":10526,\"journal\":{\"name\":\"Comput.\",\"volume\":\"96 1\",\"pages\":\"116\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computation11060116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11060116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

波形的时间和频率集中在工程应用中经常引起人们的兴趣。零阶的Slepian基是已知在频域中最优集中的索引受限(有限)向量。本文提出了一种将有索引限制的Slepian基映射到离散时间向量的方法,从而得到一个最优集中在频率上的有时间限制的离散Slepian基。本文的主要结果是证明(离散时间)Slepian基在一定条件下达到最小时间-带宽紧性。我们区分了Slepian的特征(有效)时间/带宽和它们的定义时间/带宽(用于生成Slepian基的时间和带宽参数)。利用信号有效时间和带宽的两种不同定义,表明当Slepian基的定义时间带宽积增加时,其有效时间带宽积趋于最小值。这意味着,不仅已知零阶Slepian基是最优时间限制和带宽集中的基向量,而且随着它们的定义时间带宽积的增加,它们的有效时间带宽性质接近不确定性原理允许的已知最小紧度。同时也得出了关于最小的定义时间带宽参数以达到尽可能小的紧凑性的结论。这些结论为时间带宽乘积可以自由选择的应用提供了指导,因此可以选择以实现最小的紧凑性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Time Frequency Compactness of the Slepian Basis of Order Zero for Engineering Applications
Time and frequency concentrations of waveforms are often of interest in engineering applications. The Slepian basis of order zero is an index-limited (finite) vector that is known to be optimally concentrated in the frequency domain. This paper proposes a method of mapping the index-limited Slepian basis to a discrete-time vector, hence obtaining a time-limited, discrete-time Slepian basis that is optimally concentrated in frequency. The main result of this note is to demonstrate that the (discrete-time) Slepian basis achieves minimum time-bandwidth compactness under certain conditions. We distinguish between the characteristic (effective) time/bandwidth of the Slepians and their defining time/bandwidth (the time and bandwidth parameters used to generate the Slepian basis). Using two different definitions of effective time and bandwidth of a signal, we show that when the defining time-bandwidth product of the Slepian basis increases, its effective time-bandwidth product tends to a minimum value. This implies that not only are the zeroth order Slepian bases known to be optimally time-limited and band-concentrated basis vectors, but also as their defining time-bandwidth products increase, their effective time-bandwidth properties approach the known minimum compactness allowed by the uncertainty principle. Conclusions are also drawn about the smallest defining time-bandwidth parameters to reach the minimum possible compactness. These conclusions give guidance for applications where the time-bandwidth product is free to be selected and hence may be selected to achieve minimum compactness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信