氮部分取代镍对奥氏体不锈钢组织和力学性能的影响

A. Ahmed, S. Ghali, M. Eissa, S. E. Badry
{"title":"氮部分取代镍对奥氏体不锈钢组织和力学性能的影响","authors":"A. Ahmed, S. Ghali, M. Eissa, S. E. Badry","doi":"10.1155/2011/639283","DOIUrl":null,"url":null,"abstract":"A new modified austenitic stainless steel has been developed through partial replacement of nickel by nitrogen. Nitrogen stainless steel was produced in 10 kg induction furnace under nitrogen pressure, while reference one, AISI 316 steel grade, was produced in open-induction furnace. Both were cast and hot forged, and the total nitrogen was determined. \nFurthermore, the produced forged steels were subjected to solution treatment at different temperatures. The microstructure of produced stainless steels was observed. The X-ray diffractmeter and Mossbauer effect spectroscopy were used to follow the phase change in reference and modified steels after different heat treatment temperatures. The influence of grain-size, soluble, and insoluble nitrogen on tensile strength and hardness was investigated. The major phase in the modified steel has a fcc structure similar to the reference one, but with finer grains and more expanded lattice. The yield strength and hardness of the nitrogen-modified stainless steel are higher than the reference steel. On the other hand, the increase of nitrogen content deteriorates the steel ductility.","PeriodicalId":16342,"journal":{"name":"Journal of Metallurgy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Influence of Partial Replacement of Nickel by Nitrogen on Microstructure and Mechanical Properties of Austenitic Stainless Steel\",\"authors\":\"A. Ahmed, S. Ghali, M. Eissa, S. E. Badry\",\"doi\":\"10.1155/2011/639283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new modified austenitic stainless steel has been developed through partial replacement of nickel by nitrogen. Nitrogen stainless steel was produced in 10 kg induction furnace under nitrogen pressure, while reference one, AISI 316 steel grade, was produced in open-induction furnace. Both were cast and hot forged, and the total nitrogen was determined. \\nFurthermore, the produced forged steels were subjected to solution treatment at different temperatures. The microstructure of produced stainless steels was observed. The X-ray diffractmeter and Mossbauer effect spectroscopy were used to follow the phase change in reference and modified steels after different heat treatment temperatures. The influence of grain-size, soluble, and insoluble nitrogen on tensile strength and hardness was investigated. The major phase in the modified steel has a fcc structure similar to the reference one, but with finer grains and more expanded lattice. The yield strength and hardness of the nitrogen-modified stainless steel are higher than the reference steel. On the other hand, the increase of nitrogen content deteriorates the steel ductility.\",\"PeriodicalId\":16342,\"journal\":{\"name\":\"Journal of Metallurgy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Metallurgy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2011/639283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/639283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

用氮部分取代镍,研制出一种新型改性奥氏体不锈钢。氮不锈钢是在10kg的感应炉中在氮气压力下生产的,而参考不锈钢AISI 316钢是在开式感应炉中生产的。两种材料均进行了铸造和热锻,并测定了总氮含量。此外,还对生产的锻钢进行了不同温度下的固溶处理。观察了生产的不锈钢的显微组织。采用x射线衍射仪和穆斯堡尔效应谱仪对参照钢和改性钢在不同热处理温度下的相变进行了跟踪研究。研究了晶粒尺寸、可溶性氮和不溶性氮对拉伸强度和硬度的影响。改性钢的主要相具有与参考钢相似的fcc结构,但晶粒更细,晶格扩展更大。氮改性不锈钢的屈服强度和硬度均高于对照钢。另一方面,氮含量的增加使钢的延性恶化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of Partial Replacement of Nickel by Nitrogen on Microstructure and Mechanical Properties of Austenitic Stainless Steel
A new modified austenitic stainless steel has been developed through partial replacement of nickel by nitrogen. Nitrogen stainless steel was produced in 10 kg induction furnace under nitrogen pressure, while reference one, AISI 316 steel grade, was produced in open-induction furnace. Both were cast and hot forged, and the total nitrogen was determined. Furthermore, the produced forged steels were subjected to solution treatment at different temperatures. The microstructure of produced stainless steels was observed. The X-ray diffractmeter and Mossbauer effect spectroscopy were used to follow the phase change in reference and modified steels after different heat treatment temperatures. The influence of grain-size, soluble, and insoluble nitrogen on tensile strength and hardness was investigated. The major phase in the modified steel has a fcc structure similar to the reference one, but with finer grains and more expanded lattice. The yield strength and hardness of the nitrogen-modified stainless steel are higher than the reference steel. On the other hand, the increase of nitrogen content deteriorates the steel ductility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信