混合坐标系下非线性滤波器目标跟踪的比较研究

Jaipal R. Katkuri, V. Jilkov, X. Li
{"title":"混合坐标系下非线性滤波器目标跟踪的比较研究","authors":"Jaipal R. Katkuri, V. Jilkov, X. Li","doi":"10.1109/SSST.2010.5442834","DOIUrl":null,"url":null,"abstract":"The measurement model nonlinearity is a major challenge in target tracking. This paper presents a comparative performance study of seven nonlinear filters in handling the measurement model nonlinearity. They are: the extended Kalman filter, the unscented filter, the second order divided-differences filter, the Gauss-Hermite quadrature filter, the two-step Kalman filter, the Gaussian particle filter, and the linear minimum mean-square error tracking filter with polar measurements. Comprehensive performance evaluation and comparison of all of the above mainstream nonlinear filters over the same tracking scenarios are conducted via Monte Carlo simulation. The results can facilitate the choice and design of nonlinear tracking filters in mixed coordinates.","PeriodicalId":6463,"journal":{"name":"2010 42nd Southeastern Symposium on System Theory (SSST)","volume":"15 1","pages":"202-207"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A comparative study of nonlinear filters for target tracking in mixed coordinates\",\"authors\":\"Jaipal R. Katkuri, V. Jilkov, X. Li\",\"doi\":\"10.1109/SSST.2010.5442834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The measurement model nonlinearity is a major challenge in target tracking. This paper presents a comparative performance study of seven nonlinear filters in handling the measurement model nonlinearity. They are: the extended Kalman filter, the unscented filter, the second order divided-differences filter, the Gauss-Hermite quadrature filter, the two-step Kalman filter, the Gaussian particle filter, and the linear minimum mean-square error tracking filter with polar measurements. Comprehensive performance evaluation and comparison of all of the above mainstream nonlinear filters over the same tracking scenarios are conducted via Monte Carlo simulation. The results can facilitate the choice and design of nonlinear tracking filters in mixed coordinates.\",\"PeriodicalId\":6463,\"journal\":{\"name\":\"2010 42nd Southeastern Symposium on System Theory (SSST)\",\"volume\":\"15 1\",\"pages\":\"202-207\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 42nd Southeastern Symposium on System Theory (SSST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSST.2010.5442834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 42nd Southeastern Symposium on System Theory (SSST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.2010.5442834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

测量模型的非线性是目标跟踪中的一大难题。本文对7种非线性滤波器处理测量模型非线性的性能进行了比较研究。它们是:扩展卡尔曼滤波器、无气味滤波器、二阶差分滤波器、高斯-埃尔米特正交滤波器、两步卡尔曼滤波器、高斯粒子滤波器和线性最小均方误差跟踪滤波器。通过蒙特卡洛仿真对上述几种主流非线性滤波器在相同跟踪场景下的综合性能进行了评价和比较。研究结果可为混合坐标下非线性跟踪滤波器的选择和设计提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative study of nonlinear filters for target tracking in mixed coordinates
The measurement model nonlinearity is a major challenge in target tracking. This paper presents a comparative performance study of seven nonlinear filters in handling the measurement model nonlinearity. They are: the extended Kalman filter, the unscented filter, the second order divided-differences filter, the Gauss-Hermite quadrature filter, the two-step Kalman filter, the Gaussian particle filter, and the linear minimum mean-square error tracking filter with polar measurements. Comprehensive performance evaluation and comparison of all of the above mainstream nonlinear filters over the same tracking scenarios are conducted via Monte Carlo simulation. The results can facilitate the choice and design of nonlinear tracking filters in mixed coordinates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信