并网微电网有功发电机的优化协调

A. Luna, N. Aldana, Eider Alexander Narvaez
{"title":"并网微电网有功发电机的优化协调","authors":"A. Luna, N. Aldana, Eider Alexander Narvaez","doi":"10.15446/ING.INVESTIG.V40N3.82665","DOIUrl":null,"url":null,"abstract":"In a microgrid composed of distributed active generators based on renewable energy sources, with heterogeneous features and generation profiles, the availability of the energy resource, the energy reserve capacity, and the degradation of the storage unit, define the constraints for the management and dispatch of each active generator. This can result in sub-optimal use of distributed energy resources in comparison with the operation of a single generation unit. However, under the current trend oriented to distributed installations, the overall operation could be improved if an aggregated operation is considered within the management level. This paper proposes a coordinated operation of the storage units associated with distributed active generators for a hybrid grid-connected microgrid. In order to optimize the use of the active generators, including the equalization of the state of charge of the storage units, a mathematical model is proposed. This model tries to avoid uneven degradation of the storage units, and, consequently, enhance the reserve capacity and reduce the depth of discharge by achieving the operation of the distributed system as a unified system. The simulations are carried out in GAMS and MATLAB in order to validate the system’s operation. The results show a better performing grid-connected microgrid with the proposed approach.","PeriodicalId":21285,"journal":{"name":"Revista Ingenieria E Investigacion","volume":"19 1","pages":"47-54"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal Coordination of Active Generators in a Grid-Connected Microgrid\",\"authors\":\"A. Luna, N. Aldana, Eider Alexander Narvaez\",\"doi\":\"10.15446/ING.INVESTIG.V40N3.82665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a microgrid composed of distributed active generators based on renewable energy sources, with heterogeneous features and generation profiles, the availability of the energy resource, the energy reserve capacity, and the degradation of the storage unit, define the constraints for the management and dispatch of each active generator. This can result in sub-optimal use of distributed energy resources in comparison with the operation of a single generation unit. However, under the current trend oriented to distributed installations, the overall operation could be improved if an aggregated operation is considered within the management level. This paper proposes a coordinated operation of the storage units associated with distributed active generators for a hybrid grid-connected microgrid. In order to optimize the use of the active generators, including the equalization of the state of charge of the storage units, a mathematical model is proposed. This model tries to avoid uneven degradation of the storage units, and, consequently, enhance the reserve capacity and reduce the depth of discharge by achieving the operation of the distributed system as a unified system. The simulations are carried out in GAMS and MATLAB in order to validate the system’s operation. The results show a better performing grid-connected microgrid with the proposed approach.\",\"PeriodicalId\":21285,\"journal\":{\"name\":\"Revista Ingenieria E Investigacion\",\"volume\":\"19 1\",\"pages\":\"47-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Ingenieria E Investigacion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/ING.INVESTIG.V40N3.82665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Ingenieria E Investigacion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/ING.INVESTIG.V40N3.82665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在基于可再生能源的分布式有功发电机组成的微电网中,具有异构特征和发电概况,能源的可用性、能源储备容量和存储单元的劣化,定义了对每个有功发电机管理和调度的约束。与单个发电机组的运行相比,这可能导致分布式能源的次优使用。但是,在当前面向分布式安装的趋势下,如果在管理级别考虑聚合操作,则可以改进总体操作。本文提出了一种混合并网微电网中分布式有源发电机相关存储单元的协调运行方案。为了优化有源发电机的使用,包括均衡存储单元的充电状态,提出了一个数学模型。该模型通过实现分布式系统作为一个统一的系统运行,避免了存储单元的不均匀退化,从而提高了备用容量,减小了放电深度。在GAMS和MATLAB中进行了仿真,验证了系统的运行。结果表明,该方法具有较好的并网微电网性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Coordination of Active Generators in a Grid-Connected Microgrid
In a microgrid composed of distributed active generators based on renewable energy sources, with heterogeneous features and generation profiles, the availability of the energy resource, the energy reserve capacity, and the degradation of the storage unit, define the constraints for the management and dispatch of each active generator. This can result in sub-optimal use of distributed energy resources in comparison with the operation of a single generation unit. However, under the current trend oriented to distributed installations, the overall operation could be improved if an aggregated operation is considered within the management level. This paper proposes a coordinated operation of the storage units associated with distributed active generators for a hybrid grid-connected microgrid. In order to optimize the use of the active generators, including the equalization of the state of charge of the storage units, a mathematical model is proposed. This model tries to avoid uneven degradation of the storage units, and, consequently, enhance the reserve capacity and reduce the depth of discharge by achieving the operation of the distributed system as a unified system. The simulations are carried out in GAMS and MATLAB in order to validate the system’s operation. The results show a better performing grid-connected microgrid with the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信