密码学来自热带黑森铅笔

IF 0.1 Q4 MATHEMATICS
J. Chauvet, É. Mahé
{"title":"密码学来自热带黑森铅笔","authors":"J. Chauvet, É. Mahé","doi":"10.1515/gcc-2017-0002","DOIUrl":null,"url":null,"abstract":"Abstract Recent work by Grigoriev and Shpilrain [8] suggests looking at the tropical semiring for cryptographic schemes. In this contribution we explore the tropical analogue of the Hessian pencil of plane cubic curves as a source of group-based cryptography. Using elementary tropical geometry on the tropical Hessian curves, we derive the addition and doubling formulas induced from their Jacobian and investigate the discrete logarithm problem in this group. We show that the DLP is solvable when restricted to integral points on the tropical Hesse curve, and hence inadequate for cryptographic applications. Consideration of point duplication, however, provides instances of solvable chaotic maps producing random sequences and thus a source of fast keyed hash functions.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"1 1","pages":"19 - 29"},"PeriodicalIF":0.1000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cryptography from the tropical Hessian pencil\",\"authors\":\"J. Chauvet, É. Mahé\",\"doi\":\"10.1515/gcc-2017-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Recent work by Grigoriev and Shpilrain [8] suggests looking at the tropical semiring for cryptographic schemes. In this contribution we explore the tropical analogue of the Hessian pencil of plane cubic curves as a source of group-based cryptography. Using elementary tropical geometry on the tropical Hessian curves, we derive the addition and doubling formulas induced from their Jacobian and investigate the discrete logarithm problem in this group. We show that the DLP is solvable when restricted to integral points on the tropical Hesse curve, and hence inadequate for cryptographic applications. Consideration of point duplication, however, provides instances of solvable chaotic maps producing random sequences and thus a source of fast keyed hash functions.\",\"PeriodicalId\":41862,\"journal\":{\"name\":\"Groups Complexity Cryptology\",\"volume\":\"1 1\",\"pages\":\"19 - 29\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complexity Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/gcc-2017-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2017-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

Grigoriev和Shpilrain[8]最近的工作建议研究密码方案的热带半环。在这个贡献中,我们探索了平面三次曲线的黑森铅笔的热带模拟,作为基于群的密码学的来源。利用初等热带几何在热带Hessian曲线上,导出了由其雅可比矩阵导出的加法和加倍公式,并研究了这类曲线的离散对数问题。我们证明DLP在热带黑塞曲线上的积分点上是可解的,因此不适合密码学应用。然而,考虑到点复制,提供了产生随机序列的可解混沌映射的实例,从而成为快速键控散列函数的来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cryptography from the tropical Hessian pencil
Abstract Recent work by Grigoriev and Shpilrain [8] suggests looking at the tropical semiring for cryptographic schemes. In this contribution we explore the tropical analogue of the Hessian pencil of plane cubic curves as a source of group-based cryptography. Using elementary tropical geometry on the tropical Hessian curves, we derive the addition and doubling formulas induced from their Jacobian and investigate the discrete logarithm problem in this group. We show that the DLP is solvable when restricted to integral points on the tropical Hesse curve, and hence inadequate for cryptographic applications. Consideration of point duplication, however, provides instances of solvable chaotic maps producing random sequences and thus a source of fast keyed hash functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信