{"title":"叶的总绝对曲率有界的3流形上的非正曲率叶","authors":"D. Bolotov","doi":"10.15673/TMGC.V11I4.1307","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a new class of foliations on Rie-mannian 3-manifolds, called B-foliations, generalizing the class of foliations of non-negative curvature. The leaves of B-foliations have bounded total absolute curvature in the induced Riemannian metric. We describe several topological and geometric properties of B-foliations and the structure of closed oriented 3-dimensional manifolds admitting B-foliations with non-positive curvature of leaves.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonpositive curvature foliations on 3-manifolds with bounded total absolute curvature of leaves\",\"authors\":\"D. Bolotov\",\"doi\":\"10.15673/TMGC.V11I4.1307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a new class of foliations on Rie-mannian 3-manifolds, called B-foliations, generalizing the class of foliations of non-negative curvature. The leaves of B-foliations have bounded total absolute curvature in the induced Riemannian metric. We describe several topological and geometric properties of B-foliations and the structure of closed oriented 3-dimensional manifolds admitting B-foliations with non-positive curvature of leaves.\",\"PeriodicalId\":36547,\"journal\":{\"name\":\"Proceedings of the International Geometry Center\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Geometry Center\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15673/TMGC.V11I4.1307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/TMGC.V11I4.1307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Nonpositive curvature foliations on 3-manifolds with bounded total absolute curvature of leaves
In this paper we introduce a new class of foliations on Rie-mannian 3-manifolds, called B-foliations, generalizing the class of foliations of non-negative curvature. The leaves of B-foliations have bounded total absolute curvature in the induced Riemannian metric. We describe several topological and geometric properties of B-foliations and the structure of closed oriented 3-dimensional manifolds admitting B-foliations with non-positive curvature of leaves.