{"title":"极值距离的乘积不等式","authors":"A. Dumitrescu","doi":"10.4230/LIPIcs.SoCG.2019.30","DOIUrl":null,"url":null,"abstract":"Abstract Let p 1 , … , p n be n distinct points in the plane, and assume that the minimum inter-point distance occurs s min times, while the maximum inter-point distance occurs s max times. It is shown that s min s max ≤ 9 8 n 2 + O ( n ) ; this settles a conjecture of Erdős and Pach (1990).","PeriodicalId":11245,"journal":{"name":"Discret. Comput. Geom.","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Product Inequality for Extreme Distances\",\"authors\":\"A. Dumitrescu\",\"doi\":\"10.4230/LIPIcs.SoCG.2019.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let p 1 , … , p n be n distinct points in the plane, and assume that the minimum inter-point distance occurs s min times, while the maximum inter-point distance occurs s max times. It is shown that s min s max ≤ 9 8 n 2 + O ( n ) ; this settles a conjecture of Erdős and Pach (1990).\",\"PeriodicalId\":11245,\"journal\":{\"name\":\"Discret. Comput. Geom.\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discret. Comput. Geom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.SoCG.2019.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Comput. Geom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SoCG.2019.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
允许p 1、p、p在飞机上留下模糊的点,让我认为最小的中间点停留在最小的时间,而最大的中间点停留在最大的时间。是麦克斯展示那个s min s≤9 8 + 2 n O (n);这settles a conjecture的Erdős和Pach(1990年)。
Abstract Let p 1 , … , p n be n distinct points in the plane, and assume that the minimum inter-point distance occurs s min times, while the maximum inter-point distance occurs s max times. It is shown that s min s max ≤ 9 8 n 2 + O ( n ) ; this settles a conjecture of Erdős and Pach (1990).