通过调整大小和重新映射来提高缓存效率

Subramanian Ramaswamy, S. Yalamanchili
{"title":"通过调整大小和重新映射来提高缓存效率","authors":"Subramanian Ramaswamy, S. Yalamanchili","doi":"10.1109/ICCD.2007.4601879","DOIUrl":null,"url":null,"abstract":"In this paper we propose techniques to dynamically downsize or upsize a cache accompanied by cache set/line shutdown to produce efficient caches. Unlike previous approaches, resizing is accompanied by a non-uniform remapping of memory into the resized cache, thus avoiding misses to sets/lines that are shut off. The paper first provides an analysis into the causes of energy inefficiencies revealing a simple model for improving efficiency. Based on this model we propose the concept of \"folding\" - memory regions mapping to disjoint cache resources are combined to share cache sets producing a new placement function. Folding enables powering down cache sets at the expense of possibly increasing conflict misses. Effective folding heuristics can substantially increase energy efficiency at the expense of acceptable increase in execution time. We target the 12 cache because of its larger size and greater energy consumption. Our techniques increase cache energy efficiency by 20%, and reduce the EDP (energy delay product) by up to 45% with an IPC degradation of less than 4%. The results also indicate opportunity for improving cache efficiencies further via cooperative compiler interactions.","PeriodicalId":6306,"journal":{"name":"2007 25th International Conference on Computer Design","volume":"12 1","pages":"47-54"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Improving cache efficiency via resizing + remapping\",\"authors\":\"Subramanian Ramaswamy, S. Yalamanchili\",\"doi\":\"10.1109/ICCD.2007.4601879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose techniques to dynamically downsize or upsize a cache accompanied by cache set/line shutdown to produce efficient caches. Unlike previous approaches, resizing is accompanied by a non-uniform remapping of memory into the resized cache, thus avoiding misses to sets/lines that are shut off. The paper first provides an analysis into the causes of energy inefficiencies revealing a simple model for improving efficiency. Based on this model we propose the concept of \\\"folding\\\" - memory regions mapping to disjoint cache resources are combined to share cache sets producing a new placement function. Folding enables powering down cache sets at the expense of possibly increasing conflict misses. Effective folding heuristics can substantially increase energy efficiency at the expense of acceptable increase in execution time. We target the 12 cache because of its larger size and greater energy consumption. Our techniques increase cache energy efficiency by 20%, and reduce the EDP (energy delay product) by up to 45% with an IPC degradation of less than 4%. The results also indicate opportunity for improving cache efficiencies further via cooperative compiler interactions.\",\"PeriodicalId\":6306,\"journal\":{\"name\":\"2007 25th International Conference on Computer Design\",\"volume\":\"12 1\",\"pages\":\"47-54\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 25th International Conference on Computer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2007.4601879\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 25th International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2007.4601879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

在本文中,我们提出了动态缩小或增大缓存的技术,同时关闭缓存集/行以产生高效的缓存。与以前的方法不同,调整大小伴随着将内存重新映射到调整大小的缓存中,从而避免错过关闭的集/行。本文首先对能源效率低下的原因进行了分析,揭示了一个提高效率的简单模型。基于该模型,我们提出了“折叠”的概念——将映射到不相交的缓存资源的存储区域组合在一起以共享缓存集,从而产生新的放置函数。折叠可以关闭缓存集,但代价是可能增加冲突丢失。有效的折叠启发式可以在可接受的执行时间增加的代价下大幅提高能源效率。我们的目标是12缓存,因为它的大小和能耗更大。我们的技术将缓存能源效率提高了20%,并将EDP(能量延迟产品)降低了45%,IPC退化低于4%。结果还指出了通过协作编译器交互进一步提高缓存效率的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving cache efficiency via resizing + remapping
In this paper we propose techniques to dynamically downsize or upsize a cache accompanied by cache set/line shutdown to produce efficient caches. Unlike previous approaches, resizing is accompanied by a non-uniform remapping of memory into the resized cache, thus avoiding misses to sets/lines that are shut off. The paper first provides an analysis into the causes of energy inefficiencies revealing a simple model for improving efficiency. Based on this model we propose the concept of "folding" - memory regions mapping to disjoint cache resources are combined to share cache sets producing a new placement function. Folding enables powering down cache sets at the expense of possibly increasing conflict misses. Effective folding heuristics can substantially increase energy efficiency at the expense of acceptable increase in execution time. We target the 12 cache because of its larger size and greater energy consumption. Our techniques increase cache energy efficiency by 20%, and reduce the EDP (energy delay product) by up to 45% with an IPC degradation of less than 4%. The results also indicate opportunity for improving cache efficiencies further via cooperative compiler interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信