{"title":"Multi-transfer:多视角、多源的学习迁移","authors":"Ben Tan, Erheng Zhong, E. Xiang, Qiang Yang","doi":"10.1137/1.9781611972832.27","DOIUrl":null,"url":null,"abstract":"Transfer learning, which aims to help the learning task in a target domain by leveraging knowledge from auxiliary domains, has been demonstrated to be effective in different applications, e.g., text mining, sentiment analysis, etc. In addition, in many real-world applications, auxiliary data are described from multiple perspectives and usually carried by multiple sources. For example, to help classify videos on Youtube, which include three views/perspectives: image, voice and subtitles, one may borrow data from Flickr, Last.FM and Google News. Although any single instance in these domains can only cover a part of the views available on Youtube, actually the piece of information carried by them may compensate with each other. In this paper, we define this transfer learning problem as Transfer Learning with Multiple Views and Multiple Sources. As different sources may have different probability distributions and different views may be compensate or inconsistent with each other, merging all data in a simplistic manner will not give optimal result. Thus, we propose a novel algorithm to leverage knowledge from different views and sources collaboratively, by letting different views from different sources complement each other through a co-training style framework, while revise the distribution differences in different domains. We conduct empirical studies on several real-world datasets to show that the proposed approach can improve the classification accuracy by up to 8% against different state-of-the-art baselines.","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"34 1","pages":"282-293"},"PeriodicalIF":2.1000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Multi-transfer: Transfer learning with multiple views and multiple sources\",\"authors\":\"Ben Tan, Erheng Zhong, E. Xiang, Qiang Yang\",\"doi\":\"10.1137/1.9781611972832.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transfer learning, which aims to help the learning task in a target domain by leveraging knowledge from auxiliary domains, has been demonstrated to be effective in different applications, e.g., text mining, sentiment analysis, etc. In addition, in many real-world applications, auxiliary data are described from multiple perspectives and usually carried by multiple sources. For example, to help classify videos on Youtube, which include three views/perspectives: image, voice and subtitles, one may borrow data from Flickr, Last.FM and Google News. Although any single instance in these domains can only cover a part of the views available on Youtube, actually the piece of information carried by them may compensate with each other. In this paper, we define this transfer learning problem as Transfer Learning with Multiple Views and Multiple Sources. As different sources may have different probability distributions and different views may be compensate or inconsistent with each other, merging all data in a simplistic manner will not give optimal result. Thus, we propose a novel algorithm to leverage knowledge from different views and sources collaboratively, by letting different views from different sources complement each other through a co-training style framework, while revise the distribution differences in different domains. We conduct empirical studies on several real-world datasets to show that the proposed approach can improve the classification accuracy by up to 8% against different state-of-the-art baselines.\",\"PeriodicalId\":48684,\"journal\":{\"name\":\"Statistical Analysis and Data Mining\",\"volume\":\"34 1\",\"pages\":\"282-293\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611972832.27\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1137/1.9781611972832.27","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Multi-transfer: Transfer learning with multiple views and multiple sources
Transfer learning, which aims to help the learning task in a target domain by leveraging knowledge from auxiliary domains, has been demonstrated to be effective in different applications, e.g., text mining, sentiment analysis, etc. In addition, in many real-world applications, auxiliary data are described from multiple perspectives and usually carried by multiple sources. For example, to help classify videos on Youtube, which include three views/perspectives: image, voice and subtitles, one may borrow data from Flickr, Last.FM and Google News. Although any single instance in these domains can only cover a part of the views available on Youtube, actually the piece of information carried by them may compensate with each other. In this paper, we define this transfer learning problem as Transfer Learning with Multiple Views and Multiple Sources. As different sources may have different probability distributions and different views may be compensate or inconsistent with each other, merging all data in a simplistic manner will not give optimal result. Thus, we propose a novel algorithm to leverage knowledge from different views and sources collaboratively, by letting different views from different sources complement each other through a co-training style framework, while revise the distribution differences in different domains. We conduct empirical studies on several real-world datasets to show that the proposed approach can improve the classification accuracy by up to 8% against different state-of-the-art baselines.
期刊介绍:
Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce.
The focus of the journal is on papers which satisfy one or more of the following criteria:
Solve data analysis problems associated with massive, complex datasets
Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research.
Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models
Provide survey to prominent research topics.