关于循环概率和非传递概率

P. Vuksanović, A. Hildebrand
{"title":"关于循环概率和非传递概率","authors":"P. Vuksanović, A. Hildebrand","doi":"10.2140/involve.2021.14.327","DOIUrl":null,"url":null,"abstract":"Motivated by classical nontransitivity paradoxes, we call an $n$-tuple $(x_1,\\dots,x_n) \\in[0,1]^n$ \\textit{cyclic} if there exist independent random variables $U_1,\\dots, U_n$ with $P(U_i=U_j)=0$ for $i\\not=j$ such that $P(U_{i+1}>U_i)=x_i$ for $i=1,\\dots,n-1$ and $P(U_1>U_n)=x_n$. We call the tuple $(x_1,\\dots,x_n)$ \\textit{nontransitive} if it is cyclic and in addition satisfies $x_i>1/2$ for all $i$. \nLet $p_n$ (resp.~$p_n^*$) denote the probability that a randomly chosen $n$-tuple $(x_1,\\dots,x_n)\\in[0,1]^n$ is cyclic (resp.~nontransitive). We determine $p_3$ and $p_3^*$ exactly, while for $n\\ge4$ we give upper and lower bounds for $p_n$ that show that $p_n$ converges to $1$ as $n\\to\\infty$. We also determine the distribution of the smallest, middle, and largest elements in a cyclic triple.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On cyclic and nontransitive probabilities\",\"authors\":\"P. Vuksanović, A. Hildebrand\",\"doi\":\"10.2140/involve.2021.14.327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by classical nontransitivity paradoxes, we call an $n$-tuple $(x_1,\\\\dots,x_n) \\\\in[0,1]^n$ \\\\textit{cyclic} if there exist independent random variables $U_1,\\\\dots, U_n$ with $P(U_i=U_j)=0$ for $i\\\\not=j$ such that $P(U_{i+1}>U_i)=x_i$ for $i=1,\\\\dots,n-1$ and $P(U_1>U_n)=x_n$. We call the tuple $(x_1,\\\\dots,x_n)$ \\\\textit{nontransitive} if it is cyclic and in addition satisfies $x_i>1/2$ for all $i$. \\nLet $p_n$ (resp.~$p_n^*$) denote the probability that a randomly chosen $n$-tuple $(x_1,\\\\dots,x_n)\\\\in[0,1]^n$ is cyclic (resp.~nontransitive). We determine $p_3$ and $p_3^*$ exactly, while for $n\\\\ge4$ we give upper and lower bounds for $p_n$ that show that $p_n$ converges to $1$ as $n\\\\to\\\\infty$. We also determine the distribution of the smallest, middle, and largest elements in a cyclic triple.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/involve.2021.14.327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/involve.2021.14.327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

受经典非传递性悖论的启发,如果存在独立随机变量$U_1,\dots, U_n$,我们称$n$ -元组$(x_1,\dots,x_n) \in[0,1]^n$为\textit{循环}的,其中$P(U_i=U_j)=0$为$i\not=j$,这样$P(U_{i+1}>U_i)=x_i$为$i=1,\dots,n-1$和$P(U_1>U_n)=x_n$。我们称元组$(x_1,\dots,x_n)$\textit{为不可传递}的,如果它是循环的,并且满足所有$i$的$x_i>1/2$。让$p_n$(回复)$p_n^*$)表示随机选择的$n$ -元组$(x_1,\dots,x_n)\in[0,1]^n$是循环的概率。不可传递的)。我们精确地确定了$p_3$和$p_3^*$,而对于$n\ge4$,我们给出了$p_n$的上界和下界,这表明$p_n$收敛到$1$为$n\to\infty$。我们还确定了循环三元组中最小、中间和最大元素的分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On cyclic and nontransitive probabilities
Motivated by classical nontransitivity paradoxes, we call an $n$-tuple $(x_1,\dots,x_n) \in[0,1]^n$ \textit{cyclic} if there exist independent random variables $U_1,\dots, U_n$ with $P(U_i=U_j)=0$ for $i\not=j$ such that $P(U_{i+1}>U_i)=x_i$ for $i=1,\dots,n-1$ and $P(U_1>U_n)=x_n$. We call the tuple $(x_1,\dots,x_n)$ \textit{nontransitive} if it is cyclic and in addition satisfies $x_i>1/2$ for all $i$. Let $p_n$ (resp.~$p_n^*$) denote the probability that a randomly chosen $n$-tuple $(x_1,\dots,x_n)\in[0,1]^n$ is cyclic (resp.~nontransitive). We determine $p_3$ and $p_3^*$ exactly, while for $n\ge4$ we give upper and lower bounds for $p_n$ that show that $p_n$ converges to $1$ as $n\to\infty$. We also determine the distribution of the smallest, middle, and largest elements in a cyclic triple.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信