Biao Liu, Rongping Tan, Baogao Tan, Chenhui Huang, Keqin Yang
{"title":"基于超分辨率重建算法的前列腺癌MRI诊断及前列腺特异性抗原治疗效果评价","authors":"Biao Liu, Rongping Tan, Baogao Tan, Chenhui Huang, Keqin Yang","doi":"10.1155/2022/5447347","DOIUrl":null,"url":null,"abstract":"MRI of prostate cancer (PCa) was performed using a projection onto convex sets (POCS) super-resolution reconstruction algorithm to evaluate and analyze the treatment of prostate-specific antigen (PSA) and provide a theoretical reference for clinical practice. A total of 110 patients with PCa were selected as the study subjects. First, the modified POCS algorithm was used to reconstruct the MRI images, and the gradient interpolation algorithm was used instead of the traditional bilinear algorithm to preserve the edge information. The diagnostic and therapeutic effects of MRI examination, PSA examination, and MRI combined with PSA based on a super-resolution reconstruction algorithm were then compared. The simulation results showed that the POCS algorithm was superior to the bilinear interpolation results and was superior to the common POCS algorithm. After adding noise artificially, the restoration algorithm was effective and could preserve the details in the image. The performance indexes of PSA in the diagnosis of PCa were 75.4%, 60.1%, 70.08%, 72.2%, and 60.3%, respectively; the performance indexes of MRI in the diagnosis of PCa were 84.6%, 61.4%, 71.11%, 73.08%, and 61.9%, respectively; and the performance indexes of MRI combined with PSA based on the super-resolution reconstruction algorithm in the diagnosis of PCa were 96.05%, 88.3%, 95.1%, 93.6%, and 92.7%, respectively. The indicators of MRI combined with PSA based on the super-resolution reconstruction algorithm were significantly higher than those of the other two methods (\n \n P\n \n < 0.05). The signal-to-noise ratio of MRI of PCa based on the super-resolution reconstruction algorithm has been greatly improved, with good clarity, which can improve the diagnostic accuracy of PCa patients and has certain advantages in the examination. MRI based on the super-resolution reconstruction algorithm has a high value in the diagnosis and treatment of PCa.","PeriodicalId":55216,"journal":{"name":"Concepts in Magnetic Resonance Part A","volume":"26 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super-Resolution Reconstruction Algorithm-Based MRI Diagnosis of Prostate Cancer and Evaluation of Treatment Effect of Prostate Specific Antigen\",\"authors\":\"Biao Liu, Rongping Tan, Baogao Tan, Chenhui Huang, Keqin Yang\",\"doi\":\"10.1155/2022/5447347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MRI of prostate cancer (PCa) was performed using a projection onto convex sets (POCS) super-resolution reconstruction algorithm to evaluate and analyze the treatment of prostate-specific antigen (PSA) and provide a theoretical reference for clinical practice. A total of 110 patients with PCa were selected as the study subjects. First, the modified POCS algorithm was used to reconstruct the MRI images, and the gradient interpolation algorithm was used instead of the traditional bilinear algorithm to preserve the edge information. The diagnostic and therapeutic effects of MRI examination, PSA examination, and MRI combined with PSA based on a super-resolution reconstruction algorithm were then compared. The simulation results showed that the POCS algorithm was superior to the bilinear interpolation results and was superior to the common POCS algorithm. After adding noise artificially, the restoration algorithm was effective and could preserve the details in the image. The performance indexes of PSA in the diagnosis of PCa were 75.4%, 60.1%, 70.08%, 72.2%, and 60.3%, respectively; the performance indexes of MRI in the diagnosis of PCa were 84.6%, 61.4%, 71.11%, 73.08%, and 61.9%, respectively; and the performance indexes of MRI combined with PSA based on the super-resolution reconstruction algorithm in the diagnosis of PCa were 96.05%, 88.3%, 95.1%, 93.6%, and 92.7%, respectively. The indicators of MRI combined with PSA based on the super-resolution reconstruction algorithm were significantly higher than those of the other two methods (\\n \\n P\\n \\n < 0.05). The signal-to-noise ratio of MRI of PCa based on the super-resolution reconstruction algorithm has been greatly improved, with good clarity, which can improve the diagnostic accuracy of PCa patients and has certain advantages in the examination. MRI based on the super-resolution reconstruction algorithm has a high value in the diagnosis and treatment of PCa.\",\"PeriodicalId\":55216,\"journal\":{\"name\":\"Concepts in Magnetic Resonance Part A\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concepts in Magnetic Resonance Part A\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/5447347\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concepts in Magnetic Resonance Part A","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2022/5447347","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Super-Resolution Reconstruction Algorithm-Based MRI Diagnosis of Prostate Cancer and Evaluation of Treatment Effect of Prostate Specific Antigen
MRI of prostate cancer (PCa) was performed using a projection onto convex sets (POCS) super-resolution reconstruction algorithm to evaluate and analyze the treatment of prostate-specific antigen (PSA) and provide a theoretical reference for clinical practice. A total of 110 patients with PCa were selected as the study subjects. First, the modified POCS algorithm was used to reconstruct the MRI images, and the gradient interpolation algorithm was used instead of the traditional bilinear algorithm to preserve the edge information. The diagnostic and therapeutic effects of MRI examination, PSA examination, and MRI combined with PSA based on a super-resolution reconstruction algorithm were then compared. The simulation results showed that the POCS algorithm was superior to the bilinear interpolation results and was superior to the common POCS algorithm. After adding noise artificially, the restoration algorithm was effective and could preserve the details in the image. The performance indexes of PSA in the diagnosis of PCa were 75.4%, 60.1%, 70.08%, 72.2%, and 60.3%, respectively; the performance indexes of MRI in the diagnosis of PCa were 84.6%, 61.4%, 71.11%, 73.08%, and 61.9%, respectively; and the performance indexes of MRI combined with PSA based on the super-resolution reconstruction algorithm in the diagnosis of PCa were 96.05%, 88.3%, 95.1%, 93.6%, and 92.7%, respectively. The indicators of MRI combined with PSA based on the super-resolution reconstruction algorithm were significantly higher than those of the other two methods (
P
< 0.05). The signal-to-noise ratio of MRI of PCa based on the super-resolution reconstruction algorithm has been greatly improved, with good clarity, which can improve the diagnostic accuracy of PCa patients and has certain advantages in the examination. MRI based on the super-resolution reconstruction algorithm has a high value in the diagnosis and treatment of PCa.
期刊介绍:
Concepts in Magnetic Resonance Part A brings together clinicians, chemists, and physicists involved in the application of magnetic resonance techniques. The journal welcomes contributions predominantly from the fields of magnetic resonance imaging (MRI), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR), but also encourages submissions relating to less common magnetic resonance imaging and analytical methods.
Contributors come from academic, governmental, and clinical communities, to disseminate the latest important experimental results from medical, non-medical, and analytical magnetic resonance methods, as well as related computational and theoretical advances.
Subject areas include (but are by no means limited to):
-Fundamental advances in the understanding of magnetic resonance
-Experimental results from magnetic resonance imaging (including MRI and its specialized applications)
-Experimental results from magnetic resonance spectroscopy (including NMR, EPR, and their specialized applications)
-Computational and theoretical support and prediction for experimental results
-Focused reviews providing commentary and discussion on recent results and developments in topical areas of investigation
-Reviews of magnetic resonance approaches with a tutorial or educational approach