{"title":"在广义四元数群上使用两级群码的分组编码调制","authors":"T. Selvakumaran, B. Rajan","doi":"10.1109/18.746847","DOIUrl":null,"url":null,"abstract":"A length n group code over a group G is a subgroup of G/sup n/ under component-wise group operation. Two-level group codes over the class of generalized quaternion groups, Q(2/sup m/), m/spl ges/3, are constructed using a binary code and a code over Z(2/sup m-1/), the ring of integers modulo 2/sup m-1/ as component codes and a mapping f from Z/sub 2//spl times/Z(2/sup m-1/)to Q(2/sup m/). A set of necessary and sufficient conditions on the component codes is derived which will give group codes over Q(2/sup m/). Given the generator matrices of the component codes, the computational effort involved in checking the necessary and sufficient conditions is discussed. Starting from a four-dimensional signal set matched to Q(2/sup m/), it is shown that the Euclidean space codes obtained from the group codes over Q(2/sup m/) have Euclidean distance profiles which are independent of the coset representative selection involved in f. A closed-form expression for the minimum Euclidean distance of the resulting group codes over Q(2/sup m/) is obtained in terms of the Euclidean distances of the component codes. Finally, it is shown that all four-dimensional signal sets matched to Q(2/sup m/) have the same Euclidean distance profile and hence the Euclidean space codes corresponding to each signal set for a given group code over Q(2/sup m/) are automorphic Euclidean-distance equivalent.","PeriodicalId":13250,"journal":{"name":"IEEE Trans. Inf. Theory","volume":"1 1","pages":"365-372"},"PeriodicalIF":0.0000,"publicationDate":"1997-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Block-Coded Modulation Using Two-Level Group Codes Over Generalized Quaternion Groups\",\"authors\":\"T. Selvakumaran, B. Rajan\",\"doi\":\"10.1109/18.746847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A length n group code over a group G is a subgroup of G/sup n/ under component-wise group operation. Two-level group codes over the class of generalized quaternion groups, Q(2/sup m/), m/spl ges/3, are constructed using a binary code and a code over Z(2/sup m-1/), the ring of integers modulo 2/sup m-1/ as component codes and a mapping f from Z/sub 2//spl times/Z(2/sup m-1/)to Q(2/sup m/). A set of necessary and sufficient conditions on the component codes is derived which will give group codes over Q(2/sup m/). Given the generator matrices of the component codes, the computational effort involved in checking the necessary and sufficient conditions is discussed. Starting from a four-dimensional signal set matched to Q(2/sup m/), it is shown that the Euclidean space codes obtained from the group codes over Q(2/sup m/) have Euclidean distance profiles which are independent of the coset representative selection involved in f. A closed-form expression for the minimum Euclidean distance of the resulting group codes over Q(2/sup m/) is obtained in terms of the Euclidean distances of the component codes. Finally, it is shown that all four-dimensional signal sets matched to Q(2/sup m/) have the same Euclidean distance profile and hence the Euclidean space codes corresponding to each signal set for a given group code over Q(2/sup m/) are automorphic Euclidean-distance equivalent.\",\"PeriodicalId\":13250,\"journal\":{\"name\":\"IEEE Trans. Inf. Theory\",\"volume\":\"1 1\",\"pages\":\"365-372\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Inf. Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/18.746847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Inf. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/18.746847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Block-Coded Modulation Using Two-Level Group Codes Over Generalized Quaternion Groups
A length n group code over a group G is a subgroup of G/sup n/ under component-wise group operation. Two-level group codes over the class of generalized quaternion groups, Q(2/sup m/), m/spl ges/3, are constructed using a binary code and a code over Z(2/sup m-1/), the ring of integers modulo 2/sup m-1/ as component codes and a mapping f from Z/sub 2//spl times/Z(2/sup m-1/)to Q(2/sup m/). A set of necessary and sufficient conditions on the component codes is derived which will give group codes over Q(2/sup m/). Given the generator matrices of the component codes, the computational effort involved in checking the necessary and sufficient conditions is discussed. Starting from a four-dimensional signal set matched to Q(2/sup m/), it is shown that the Euclidean space codes obtained from the group codes over Q(2/sup m/) have Euclidean distance profiles which are independent of the coset representative selection involved in f. A closed-form expression for the minimum Euclidean distance of the resulting group codes over Q(2/sup m/) is obtained in terms of the Euclidean distances of the component codes. Finally, it is shown that all four-dimensional signal sets matched to Q(2/sup m/) have the same Euclidean distance profile and hence the Euclidean space codes corresponding to each signal set for a given group code over Q(2/sup m/) are automorphic Euclidean-distance equivalent.