开发格罗宁根地区建筑物的脆弱性和后果模型

IF 1.6 2区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
H. Crowley, R. Pinho, B. Polidoro, J. van Elk
{"title":"开发格罗宁根地区建筑物的脆弱性和后果模型","authors":"H. Crowley, R. Pinho, B. Polidoro, J. van Elk","doi":"10.1017/njg.2017.36","DOIUrl":null,"url":null,"abstract":"Abstract This paper describes the ongoing experimental and analytical activities that are being carried out to develop fatality and consequence models for the estimation of ‘Inside Local Personal Risk’ (ILPR) of buildings within the Groningen field. ILPR is defined as the annual probability of fatality for a hypothetical person who is continuously present without protection inside a building. In order to be able to estimate this risk metric, a robust estimate of the probability of collapse of structural and non-structural elements within a building is needed, as these have been found to be the greatest drivers of fatality risk. To estimate the collapse potential of buildings in Groningen, structural numerical models of a number of representative case studies have been developed and calibrated through in situ and laboratory testing on materials, connections, structural components and even full-scale buildings. These numerical models are then subjected to increased levels of ground shaking to estimate the probability of collapse, and the associated consequences are estimated from the observed collapse mechanisms.","PeriodicalId":49768,"journal":{"name":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","volume":"434 1","pages":"s247 - s257"},"PeriodicalIF":1.6000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Developing fragility and consequence models for buildings in the Groningen field\",\"authors\":\"H. Crowley, R. Pinho, B. Polidoro, J. van Elk\",\"doi\":\"10.1017/njg.2017.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper describes the ongoing experimental and analytical activities that are being carried out to develop fatality and consequence models for the estimation of ‘Inside Local Personal Risk’ (ILPR) of buildings within the Groningen field. ILPR is defined as the annual probability of fatality for a hypothetical person who is continuously present without protection inside a building. In order to be able to estimate this risk metric, a robust estimate of the probability of collapse of structural and non-structural elements within a building is needed, as these have been found to be the greatest drivers of fatality risk. To estimate the collapse potential of buildings in Groningen, structural numerical models of a number of representative case studies have been developed and calibrated through in situ and laboratory testing on materials, connections, structural components and even full-scale buildings. These numerical models are then subjected to increased levels of ground shaking to estimate the probability of collapse, and the associated consequences are estimated from the observed collapse mechanisms.\",\"PeriodicalId\":49768,\"journal\":{\"name\":\"Netherlands Journal of Geosciences-Geologie En Mijnbouw\",\"volume\":\"434 1\",\"pages\":\"s247 - s257\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Netherlands Journal of Geosciences-Geologie En Mijnbouw\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/njg.2017.36\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Netherlands Journal of Geosciences-Geologie En Mijnbouw","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/njg.2017.36","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 9

摘要

本文描述了正在进行的实验和分析活动,这些活动正在进行,以开发用于估计格罗宁根地区建筑物“内部个人风险”(ILPR)的死亡率和后果模型。ILPR被定义为一个假设的人在没有保护的情况下持续出现在建筑物内的年死亡概率。为了能够估计这种风险度量,需要对建筑物内结构和非结构部件倒塌的概率进行可靠的估计,因为这些已被发现是死亡风险的最大驱动因素。为了估计格罗宁根建筑倒塌的可能性,通过对材料、连接、结构部件甚至全尺寸建筑的现场和实验室测试,开发了许多具有代表性的案例研究的结构数值模型并进行了校准。然后将这些数值模型置于增加的地面震动水平下,以估计倒塌的可能性,并根据观察到的倒塌机制估计相关后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing fragility and consequence models for buildings in the Groningen field
Abstract This paper describes the ongoing experimental and analytical activities that are being carried out to develop fatality and consequence models for the estimation of ‘Inside Local Personal Risk’ (ILPR) of buildings within the Groningen field. ILPR is defined as the annual probability of fatality for a hypothetical person who is continuously present without protection inside a building. In order to be able to estimate this risk metric, a robust estimate of the probability of collapse of structural and non-structural elements within a building is needed, as these have been found to be the greatest drivers of fatality risk. To estimate the collapse potential of buildings in Groningen, structural numerical models of a number of representative case studies have been developed and calibrated through in situ and laboratory testing on materials, connections, structural components and even full-scale buildings. These numerical models are then subjected to increased levels of ground shaking to estimate the probability of collapse, and the associated consequences are estimated from the observed collapse mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
25.90%
发文量
14
审稿时长
>12 weeks
期刊介绍: Netherlands Journal of Geosciences - Geologie en Mijnbouw is a fully open access journal which publishes papers on all aspects of geoscience, providing they are of international interest and quality. As the official publication of the ''Netherlands Journal of Geosciences'' Foundation the journal publishes new and significant research in geosciences with a regional focus on the Netherlands, the North Sea region and relevant adjacent areas. A wide range of topics within the geosciences are covered in the journal, including "geology, physical geography, geophyics, (geo-)archeology, paleontology, hydro(geo)logy, hydrocarbon exploration, modelling and visualisation." The journal is a continuation of Geologie and Mijnbouw (published by the Royal Geological and Mining Society of the Netherlands, KNGMG) and Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen (published by TNO Geological Survey of the Netherlands). The journal is published in full colour.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信