分类任务数据挖掘十大算法的统计比较

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
N. Settouti, M. Bechar, M. A. Chikh
{"title":"分类任务数据挖掘十大算法的统计比较","authors":"N. Settouti, M. Bechar, M. A. Chikh","doi":"10.9781/IJIMAI.2016.4110","DOIUrl":null,"url":null,"abstract":"This work is builds on the study of the 10 top data mining algorithms identified by the IEEE International Conference on Data Mining (ICDM) community in December 2006. We address the same study, but with the application of statistical tests to establish, a more appropriate and justified ranking classifier for classification tasks. Current studies and practices on theoretical and empirical comparison of several methods, approaches, advocated tests that are more appropriate. Thereby, recent studies recommend a set of simple and robust non-parametric tests for statistical comparisons classifiers. In this paper, we propose to perform non-parametric statistical tests by the Friedman test with post-hoc tests corresponding to the comparison of several classifiers on multiple data sets. The tests provide a better judge for the relevance of these algorithms.","PeriodicalId":48602,"journal":{"name":"International Journal of Interactive Multimedia and Artificial Intelligence","volume":"1 1","pages":"46-51"},"PeriodicalIF":3.4000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"Statistical Comparisons of the Top 10 Algorithms in Data Mining for Classification Task\",\"authors\":\"N. Settouti, M. Bechar, M. A. Chikh\",\"doi\":\"10.9781/IJIMAI.2016.4110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is builds on the study of the 10 top data mining algorithms identified by the IEEE International Conference on Data Mining (ICDM) community in December 2006. We address the same study, but with the application of statistical tests to establish, a more appropriate and justified ranking classifier for classification tasks. Current studies and practices on theoretical and empirical comparison of several methods, approaches, advocated tests that are more appropriate. Thereby, recent studies recommend a set of simple and robust non-parametric tests for statistical comparisons classifiers. In this paper, we propose to perform non-parametric statistical tests by the Friedman test with post-hoc tests corresponding to the comparison of several classifiers on multiple data sets. The tests provide a better judge for the relevance of these algorithms.\",\"PeriodicalId\":48602,\"journal\":{\"name\":\"International Journal of Interactive Multimedia and Artificial Intelligence\",\"volume\":\"1 1\",\"pages\":\"46-51\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Interactive Multimedia and Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.9781/IJIMAI.2016.4110\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Interactive Multimedia and Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.9781/IJIMAI.2016.4110","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 67

摘要

这项工作是建立在对2006年12月IEEE国际数据挖掘会议(ICDM)社区确定的10个顶级数据挖掘算法的研究之上的。我们解决了同样的研究,但与统计测试的应用,以建立一个更合适和合理的分类器的分类任务。目前的研究和实践对几种理论方法和实证方法进行了比较,主张采用比较合适的检验方法。因此,最近的研究推荐了一套简单而稳健的非参数测试统计比较分类器。在本文中,我们建议通过Friedman检验进行非参数统计检验,并采用对应于多个数据集上几个分类器比较的事后检验。这些测试为这些算法的相关性提供了更好的判断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Comparisons of the Top 10 Algorithms in Data Mining for Classification Task
This work is builds on the study of the 10 top data mining algorithms identified by the IEEE International Conference on Data Mining (ICDM) community in December 2006. We address the same study, but with the application of statistical tests to establish, a more appropriate and justified ranking classifier for classification tasks. Current studies and practices on theoretical and empirical comparison of several methods, approaches, advocated tests that are more appropriate. Thereby, recent studies recommend a set of simple and robust non-parametric tests for statistical comparisons classifiers. In this paper, we propose to perform non-parametric statistical tests by the Friedman test with post-hoc tests corresponding to the comparison of several classifiers on multiple data sets. The tests provide a better judge for the relevance of these algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
11.10%
发文量
47
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信