使用可穿戴设备的远程云端自动中风康复评估

Shane Halloran, J. Shi, Yu Guan, Xi Chen, Michael Dunne-Willows, J. Eyre
{"title":"使用可穿戴设备的远程云端自动中风康复评估","authors":"Shane Halloran, J. Shi, Yu Guan, Xi Chen, Michael Dunne-Willows, J. Eyre","doi":"10.1109/eScience.2018.00063","DOIUrl":null,"url":null,"abstract":"We outline a system enabling accurate remote assessment of stroke rehabilitation levels using wrist worn accelerometer time series data. The system is built based on features generated from clustering models across sliding windows in the data and makes use of computation in the cloud. Predictive models are built using advanced machine learning techniques.","PeriodicalId":6476,"journal":{"name":"2018 IEEE 14th International Conference on e-Science (e-Science)","volume":"47 1","pages":"302-302"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Remote Cloud-Based Automated Stroke Rehabilitation Assessment Using Wearables\",\"authors\":\"Shane Halloran, J. Shi, Yu Guan, Xi Chen, Michael Dunne-Willows, J. Eyre\",\"doi\":\"10.1109/eScience.2018.00063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We outline a system enabling accurate remote assessment of stroke rehabilitation levels using wrist worn accelerometer time series data. The system is built based on features generated from clustering models across sliding windows in the data and makes use of computation in the cloud. Predictive models are built using advanced machine learning techniques.\",\"PeriodicalId\":6476,\"journal\":{\"name\":\"2018 IEEE 14th International Conference on e-Science (e-Science)\",\"volume\":\"47 1\",\"pages\":\"302-302\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 14th International Conference on e-Science (e-Science)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/eScience.2018.00063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on e-Science (e-Science)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2018.00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们概述了一个系统,可以使用手腕上佩戴的加速度计时间序列数据准确地远程评估中风康复水平。该系统基于数据中跨滑动窗口的聚类模型生成的特征,并利用云计算。预测模型是使用先进的机器学习技术建立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remote Cloud-Based Automated Stroke Rehabilitation Assessment Using Wearables
We outline a system enabling accurate remote assessment of stroke rehabilitation levels using wrist worn accelerometer time series data. The system is built based on features generated from clustering models across sliding windows in the data and makes use of computation in the cloud. Predictive models are built using advanced machine learning techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信