基于soa系统的深度学习故障预测

IF 0.8 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
G. Bhandari, Ratneshwer Gupta
{"title":"基于soa系统的深度学习故障预测","authors":"G. Bhandari, Ratneshwer Gupta","doi":"10.4018/ijwsr.2020070101","DOIUrl":null,"url":null,"abstract":"Fault prediction in Service Oriented Architecture (SOA) based systems is one of the important tasks to minimize the computation cost and time of the software system development. Predicting the faults and discovering their locations in the early stage of the system development lifecycle makes maintenance processes easy and improves the resource utilization. In this paper, the authors proposed the fault prediction model for SOA-based systems by utilizing the deep learning techniques. Twenty-one source code metrics are applied to different web services projects. The web services datasets are constructed by injecting the faults into it, and metrics are extracted for both faulty and nonfaulty data for training and testing purpose. Moreover, different deep learning techniques are inspected for fault prediction of web services and performance of different methods are compared by using standard performance measures. From the experimental results, it is observed that deep learning techniques provide effective results and applicable to the real-world SOA-based systems.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"3 1","pages":"1-19"},"PeriodicalIF":0.8000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fault Prediction in SOA-Based Systems Using Deep Learning Techniques\",\"authors\":\"G. Bhandari, Ratneshwer Gupta\",\"doi\":\"10.4018/ijwsr.2020070101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault prediction in Service Oriented Architecture (SOA) based systems is one of the important tasks to minimize the computation cost and time of the software system development. Predicting the faults and discovering their locations in the early stage of the system development lifecycle makes maintenance processes easy and improves the resource utilization. In this paper, the authors proposed the fault prediction model for SOA-based systems by utilizing the deep learning techniques. Twenty-one source code metrics are applied to different web services projects. The web services datasets are constructed by injecting the faults into it, and metrics are extracted for both faulty and nonfaulty data for training and testing purpose. Moreover, different deep learning techniques are inspected for fault prediction of web services and performance of different methods are compared by using standard performance measures. From the experimental results, it is observed that deep learning techniques provide effective results and applicable to the real-world SOA-based systems.\",\"PeriodicalId\":54936,\"journal\":{\"name\":\"International Journal of Web Services Research\",\"volume\":\"3 1\",\"pages\":\"1-19\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Web Services Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijwsr.2020070101\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Services Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijwsr.2020070101","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 5

摘要

面向服务体系结构(Service Oriented Architecture, SOA)系统中的故障预测是减少软件系统开发的计算成本和时间的重要任务之一。在系统开发生命周期的早期阶段预测故障并发现故障的位置,可以简化维护过程,提高资源利用率。本文利用深度学习技术,提出了基于soa的系统故障预测模型。21个源代码指标应用于不同的web服务项目。通过向web服务数据集中注入故障来构建web服务数据集,并提取故障数据和非故障数据的度量以用于训练和测试目的。此外,研究了不同的深度学习技术对web服务故障预测的影响,并使用标准性能指标对不同方法的性能进行了比较。从实验结果可以看出,深度学习技术提供了有效的结果,并适用于实际的基于soa的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault Prediction in SOA-Based Systems Using Deep Learning Techniques
Fault prediction in Service Oriented Architecture (SOA) based systems is one of the important tasks to minimize the computation cost and time of the software system development. Predicting the faults and discovering their locations in the early stage of the system development lifecycle makes maintenance processes easy and improves the resource utilization. In this paper, the authors proposed the fault prediction model for SOA-based systems by utilizing the deep learning techniques. Twenty-one source code metrics are applied to different web services projects. The web services datasets are constructed by injecting the faults into it, and metrics are extracted for both faulty and nonfaulty data for training and testing purpose. Moreover, different deep learning techniques are inspected for fault prediction of web services and performance of different methods are compared by using standard performance measures. From the experimental results, it is observed that deep learning techniques provide effective results and applicable to the real-world SOA-based systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Web Services Research
International Journal of Web Services Research 工程技术-计算机:软件工程
CiteScore
2.40
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: The International Journal of Web Services Research (IJWSR) is the first refereed, international publication featuring the latest research findings and industry solutions involving all aspects of Web services technology. This journal covers advancements, standards, and practices of Web services, as well as identifies emerging research topics and defines the future of Web services on grid computing, multimedia, and communication. IJWSR provides an open, formal publication for high quality articles developed by theoreticians, educators, developers, researchers, and practitioners for those desiring to stay abreast of challenges in Web services technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信