改进的exp(−φ (ξ))分数阶展开法及其在非线性分数阶Sharma-Tasso-Olver方程中的应用

L. Alhakim, A. Moussa
{"title":"改进的exp(−φ (ξ))分数阶展开法及其在非线性分数阶Sharma-Tasso-Olver方程中的应用","authors":"L. Alhakim, A. Moussa","doi":"10.4172/2168-9679.1000360","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new method called exp(−I•(ξ)) fractional expansion method to seek traveling wave solutions of the nonlinear fractional Sharma-Tasso-Olver equation. The result reveals that the method together with the new fractional ordinary differential equation is a very ini¬‚uential and effective tool for solving nonlinear fractional partial differential equations in mathematical physics and engineering. The obtained solutions have been articulated by the hyperbolic functions, trigonometric functions and rational functions with arbitrary constants.","PeriodicalId":15007,"journal":{"name":"Journal of Applied and Computational Mathematics","volume":"8 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Improved exp(−ϕ(ξ)) Fractional Expansion Method and its Application to Nonlinear Fractional Sharma-Tasso-Olver Equation\",\"authors\":\"L. Alhakim, A. Moussa\",\"doi\":\"10.4172/2168-9679.1000360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new method called exp(−I•(ξ)) fractional expansion method to seek traveling wave solutions of the nonlinear fractional Sharma-Tasso-Olver equation. The result reveals that the method together with the new fractional ordinary differential equation is a very ini¬‚uential and effective tool for solving nonlinear fractional partial differential equations in mathematical physics and engineering. The obtained solutions have been articulated by the hyperbolic functions, trigonometric functions and rational functions with arbitrary constants.\",\"PeriodicalId\":15007,\"journal\":{\"name\":\"Journal of Applied and Computational Mathematics\",\"volume\":\"8 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied and Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2168-9679.1000360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9679.1000360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种新的求非线性分数阶Sharma-Tasso-Olver方程行波解的方法——exp(−I _ (ξ))分数阶展开法。结果表明,该方法与新的分数阶常微分方程是求解数学物理和工程中非线性分数阶偏微分方程的一个非常重要和有效的工具。得到的解用双曲函数、三角函数和任意常数的有理函数表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Improved exp(−ϕ(ξ)) Fractional Expansion Method and its Application to Nonlinear Fractional Sharma-Tasso-Olver Equation
In this paper, we propose a new method called exp(−I•(ξ)) fractional expansion method to seek traveling wave solutions of the nonlinear fractional Sharma-Tasso-Olver equation. The result reveals that the method together with the new fractional ordinary differential equation is a very ini¬‚uential and effective tool for solving nonlinear fractional partial differential equations in mathematical physics and engineering. The obtained solutions have been articulated by the hyperbolic functions, trigonometric functions and rational functions with arbitrary constants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信