关于牛顿法的辛格六阶变式的注记

A. Marciniak, M. Wolf
{"title":"关于牛顿法的辛格六阶变式的注记","authors":"A. Marciniak, M. Wolf","doi":"10.12921/CMST.2015.21.04.C01","DOIUrl":null,"url":null,"abstract":": In 2009 in this journal it was published the paper of M. K. Singh [1], in which the author presented a six-order variant of Newton’s method. Unfortunately, in this paper there were a number of printer errors and a serious error in the proof of theorem on the order of the method proposed. Therefore, we have opted for presenting the correct proof of this theorem.","PeriodicalId":10561,"journal":{"name":"computational methods in science and technology","volume":"88 1 1","pages":"261-264"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on the Singh Six-order Variant of Newton's Method\",\"authors\":\"A. Marciniak, M. Wolf\",\"doi\":\"10.12921/CMST.2015.21.04.C01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": In 2009 in this journal it was published the paper of M. K. Singh [1], in which the author presented a six-order variant of Newton’s method. Unfortunately, in this paper there were a number of printer errors and a serious error in the proof of theorem on the order of the method proposed. Therefore, we have opted for presenting the correct proof of this theorem.\",\"PeriodicalId\":10561,\"journal\":{\"name\":\"computational methods in science and technology\",\"volume\":\"88 1 1\",\"pages\":\"261-264\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"computational methods in science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12921/CMST.2015.21.04.C01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"computational methods in science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12921/CMST.2015.21.04.C01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

: 2009年在该杂志上发表了M. K. Singh[1]的论文,其中作者提出了牛顿方法的一个六阶变体。不幸的是,在本文中有许多打印错误和一个严重的错误证明定理的顺序所提出的方法。因此,我们选择给出这个定理的正确证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on the Singh Six-order Variant of Newton's Method
: In 2009 in this journal it was published the paper of M. K. Singh [1], in which the author presented a six-order variant of Newton’s method. Unfortunately, in this paper there were a number of printer errors and a serious error in the proof of theorem on the order of the method proposed. Therefore, we have opted for presenting the correct proof of this theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信