在油介质中制备纳米结构以增强热物理性能

Yousof Nayfeh, Syed Muhammad Rizvi, B. Far, Donghyun Shin
{"title":"在油介质中制备纳米结构以增强热物理性能","authors":"Yousof Nayfeh, Syed Muhammad Rizvi, B. Far, Donghyun Shin","doi":"10.1115/es2020-1711","DOIUrl":null,"url":null,"abstract":"\n Recently, researchers have focused on molten-salt-based nanofluids, relying on their unique ability to form special fractallike nanostructures due to the interaction between molten salt ionic molecules and the nanoparticles. These nanostructures are thought to be causing the observed heat capacity enhancement. Thus far, this phenomenon was believed to be exclusive to molten salt nanofluids. In this study, the nanostructure observed in molten-salt-based nanofluids is mimicked, and similar fractallike nanostructures were formed in-situ in polyalphaolefin (PAO) oil as the base fluid by dispersing alumina (Al2O3) nanoparticles (1% wt. concentration) in the PAO and adding hydroxyl-ended polymer (PPG) (1% wt. concentration) as surfactants to form “artificial” nanostructures by ionically bonding to the nanoparticle’s surface. The effect of these artificial nanostructures was studied to confirm that they affect the base fluid similar to the nanostructures formed in molten salt nanofluids. Results showed an increase of 4.86% in heat capacity, and a 42% increase in viscosity was measured at high shear rates, as well as a noticeable non-Newtonian rheological behavior at low shear rates. These results show that the nanostructure has formed and that the thermophysical and rheological properties of the oil have been affected as expected.","PeriodicalId":8602,"journal":{"name":"ASME 2020 14th International Conference on Energy Sustainability","volume":"99 2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanostructure Fabrication in Oil Media for Enhanced Thermophysical Properties\",\"authors\":\"Yousof Nayfeh, Syed Muhammad Rizvi, B. Far, Donghyun Shin\",\"doi\":\"10.1115/es2020-1711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Recently, researchers have focused on molten-salt-based nanofluids, relying on their unique ability to form special fractallike nanostructures due to the interaction between molten salt ionic molecules and the nanoparticles. These nanostructures are thought to be causing the observed heat capacity enhancement. Thus far, this phenomenon was believed to be exclusive to molten salt nanofluids. In this study, the nanostructure observed in molten-salt-based nanofluids is mimicked, and similar fractallike nanostructures were formed in-situ in polyalphaolefin (PAO) oil as the base fluid by dispersing alumina (Al2O3) nanoparticles (1% wt. concentration) in the PAO and adding hydroxyl-ended polymer (PPG) (1% wt. concentration) as surfactants to form “artificial” nanostructures by ionically bonding to the nanoparticle’s surface. The effect of these artificial nanostructures was studied to confirm that they affect the base fluid similar to the nanostructures formed in molten salt nanofluids. Results showed an increase of 4.86% in heat capacity, and a 42% increase in viscosity was measured at high shear rates, as well as a noticeable non-Newtonian rheological behavior at low shear rates. These results show that the nanostructure has formed and that the thermophysical and rheological properties of the oil have been affected as expected.\",\"PeriodicalId\":8602,\"journal\":{\"name\":\"ASME 2020 14th International Conference on Energy Sustainability\",\"volume\":\"99 2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2020 14th International Conference on Energy Sustainability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/es2020-1711\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2020 14th International Conference on Energy Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/es2020-1711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,研究人员把重点放在了熔融盐基纳米流体上,依靠熔融盐离子分子和纳米颗粒之间的相互作用,它们形成特殊的分形纳米结构的独特能力。这些纳米结构被认为是引起观察到的热容增强的原因。到目前为止,这种现象被认为是熔盐纳米流体所特有的。在本研究中,模拟了熔融盐基纳米流体中观察到的纳米结构,在聚α -烯烃(PAO)油中分散氧化铝(Al2O3)纳米颗粒(1% wt.浓度),并添加羟基端聚合物(PPG) (1% wt.浓度)作为表面活性剂,通过离子键与纳米颗粒表面形成“人工”纳米结构,从而在聚α -烯烃(PAO)油中形成类似的分形纳米结构。研究了这些人工纳米结构对基液的影响,证实了它们与熔盐纳米流体中形成的纳米结构相似。结果表明,在高剪切速率下,热容量增加了4.86%,粘度增加了42%,在低剪切速率下,具有明显的非牛顿流变行为。这些结果表明,纳米结构已经形成,并如预期的那样影响了油的热物理和流变性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanostructure Fabrication in Oil Media for Enhanced Thermophysical Properties
Recently, researchers have focused on molten-salt-based nanofluids, relying on their unique ability to form special fractallike nanostructures due to the interaction between molten salt ionic molecules and the nanoparticles. These nanostructures are thought to be causing the observed heat capacity enhancement. Thus far, this phenomenon was believed to be exclusive to molten salt nanofluids. In this study, the nanostructure observed in molten-salt-based nanofluids is mimicked, and similar fractallike nanostructures were formed in-situ in polyalphaolefin (PAO) oil as the base fluid by dispersing alumina (Al2O3) nanoparticles (1% wt. concentration) in the PAO and adding hydroxyl-ended polymer (PPG) (1% wt. concentration) as surfactants to form “artificial” nanostructures by ionically bonding to the nanoparticle’s surface. The effect of these artificial nanostructures was studied to confirm that they affect the base fluid similar to the nanostructures formed in molten salt nanofluids. Results showed an increase of 4.86% in heat capacity, and a 42% increase in viscosity was measured at high shear rates, as well as a noticeable non-Newtonian rheological behavior at low shear rates. These results show that the nanostructure has formed and that the thermophysical and rheological properties of the oil have been affected as expected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信