基于语义层次的知识图嵌入

Fan Linjuan, Sun Yongyong, Xu Fei, Zhou Hnghang
{"title":"基于语义层次的知识图嵌入","authors":"Fan Linjuan,&nbsp;Sun Yongyong,&nbsp;Xu Fei,&nbsp;Zhou Hnghang","doi":"10.1016/j.cogr.2022.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>In view of the current knowledge graph embedding, it mainly focuses on symmetry/opposition, inversion and combination of relationship patterns, and does not fully consider the structure of the knowledge graph. We propose a Knowledge Graph Embedding Based on Semantic Hierarchy (SHKE), which fully considers the information of knowledge graph by fusing the semantic information of the knowledge graph and the hierarchical information. The knowledge graph is mapped to a polar coordinate system, where concentric circles naturally reflect the hierarchy, and entities can be divided into modulus parts and phase parts, and then the modulus part of the polar coordinate system is mapped to the relational vector space through the relational vector, thus the modulus part takes into account the semantic information of the knowledge graph, and the phase part takes into account the hierarchical information. Experiments show that compared with other models, the proposed model improves the knowledge graph link prediction index Hits@10% by about 10% and the accuracy of the triple group classification experiment by about 10%.</p></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"2 ","pages":"Pages 147-154"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266724132200012X/pdfft?md5=eff502f209037b9c55f942f433d918f1&pid=1-s2.0-S266724132200012X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Knowledge graph embedding based on semantic hierarchy\",\"authors\":\"Fan Linjuan,&nbsp;Sun Yongyong,&nbsp;Xu Fei,&nbsp;Zhou Hnghang\",\"doi\":\"10.1016/j.cogr.2022.06.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In view of the current knowledge graph embedding, it mainly focuses on symmetry/opposition, inversion and combination of relationship patterns, and does not fully consider the structure of the knowledge graph. We propose a Knowledge Graph Embedding Based on Semantic Hierarchy (SHKE), which fully considers the information of knowledge graph by fusing the semantic information of the knowledge graph and the hierarchical information. The knowledge graph is mapped to a polar coordinate system, where concentric circles naturally reflect the hierarchy, and entities can be divided into modulus parts and phase parts, and then the modulus part of the polar coordinate system is mapped to the relational vector space through the relational vector, thus the modulus part takes into account the semantic information of the knowledge graph, and the phase part takes into account the hierarchical information. Experiments show that compared with other models, the proposed model improves the knowledge graph link prediction index Hits@10% by about 10% and the accuracy of the triple group classification experiment by about 10%.</p></div>\",\"PeriodicalId\":100288,\"journal\":{\"name\":\"Cognitive Robotics\",\"volume\":\"2 \",\"pages\":\"Pages 147-154\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266724132200012X/pdfft?md5=eff502f209037b9c55f942f433d918f1&pid=1-s2.0-S266724132200012X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266724132200012X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266724132200012X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对目前的知识图嵌入,主要关注关系模式的对称/对立、反转和组合,没有充分考虑知识图的结构。提出了一种基于语义层次的知识图嵌入方法(SHKE),通过融合知识图的语义信息和层次信息,充分考虑了知识图的信息。将知识图谱映射到极坐标系中,其中同心圆自然反映层次,实体可分为模部分和相部分,然后将极坐标系的模部分通过关系向量映射到关系向量空间,从而模部分考虑了知识图谱的语义信息,相部分考虑了层次信息。实验表明,与其他模型相比,该模型将知识图链接预测指标Hits@10%提高了约10%,三组分类实验的准确率提高了约10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knowledge graph embedding based on semantic hierarchy

In view of the current knowledge graph embedding, it mainly focuses on symmetry/opposition, inversion and combination of relationship patterns, and does not fully consider the structure of the knowledge graph. We propose a Knowledge Graph Embedding Based on Semantic Hierarchy (SHKE), which fully considers the information of knowledge graph by fusing the semantic information of the knowledge graph and the hierarchical information. The knowledge graph is mapped to a polar coordinate system, where concentric circles naturally reflect the hierarchy, and entities can be divided into modulus parts and phase parts, and then the modulus part of the polar coordinate system is mapped to the relational vector space through the relational vector, thus the modulus part takes into account the semantic information of the knowledge graph, and the phase part takes into account the hierarchical information. Experiments show that compared with other models, the proposed model improves the knowledge graph link prediction index Hits@10% by about 10% and the accuracy of the triple group classification experiment by about 10%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信