CR映射成一致伪凸超曲面的正则性及其在真全纯映射中的应用

Josef Greilhuber, B. Lamel
{"title":"CR映射成一致伪凸超曲面的正则性及其在真全纯映射中的应用","authors":"Josef Greilhuber, B. Lamel","doi":"10.2422/2036-2145.202105_009","DOIUrl":null,"url":null,"abstract":"We study regularity properties of CR maps in positive codimension valued in pseudoconvex manifolds which carry a nontrivial Levi foliation. We introduce an invariant which can be used to deduce that any sufficiently regular CR map from a minimal manifold into such a foliated target is either generically smooth or geometrically highly constrained, and to show generic smoothness of sufficiently regular CR transversal CR maps between pseudoconvex hypersurfaces. As an application, we discuss boundary regularity of proper holomorphic maps into bounded symmetric domains.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Regularity of CR maps into uniformly pseudo convex hyper surfaces and applications to proper holomorphic maps\",\"authors\":\"Josef Greilhuber, B. Lamel\",\"doi\":\"10.2422/2036-2145.202105_009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study regularity properties of CR maps in positive codimension valued in pseudoconvex manifolds which carry a nontrivial Levi foliation. We introduce an invariant which can be used to deduce that any sufficiently regular CR map from a minimal manifold into such a foliated target is either generically smooth or geometrically highly constrained, and to show generic smoothness of sufficiently regular CR transversal CR maps between pseudoconvex hypersurfaces. As an application, we discuss boundary regularity of proper holomorphic maps into bounded symmetric domains.\",\"PeriodicalId\":8132,\"journal\":{\"name\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202105_009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202105_009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了带有非平凡Levi叶的伪凸流形中正余维值的CR映射的正则性。我们引入了一个不变量,该不变量可以用来推导出任何从极小流形到这样一个叶状目标的充分正则CR映射要么是一般光滑的,要么是几何上高度约束的,并证明了伪凸超曲面之间的充分正则CR横向CR映射的一般光滑性。作为一个应用,我们讨论了有界对称域上的固有全纯映射的边界正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularity of CR maps into uniformly pseudo convex hyper surfaces and applications to proper holomorphic maps
We study regularity properties of CR maps in positive codimension valued in pseudoconvex manifolds which carry a nontrivial Levi foliation. We introduce an invariant which can be used to deduce that any sufficiently regular CR map from a minimal manifold into such a foliated target is either generically smooth or geometrically highly constrained, and to show generic smoothness of sufficiently regular CR transversal CR maps between pseudoconvex hypersurfaces. As an application, we discuss boundary regularity of proper holomorphic maps into bounded symmetric domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信