概率用例:发现用于预测认证的行为模式

Cody A. Coleman, Daniel T. Seaton, Isaac L. Chuang
{"title":"概率用例:发现用于预测认证的行为模式","authors":"Cody A. Coleman, Daniel T. Seaton, Isaac L. Chuang","doi":"10.1145/2724660.2724662","DOIUrl":null,"url":null,"abstract":"Advances in open-online education have led to a dramatic increase in the size, diversity, and traceability of learner populations, offering tremendous opportunities to study detailed learning behavior of users around the world. This paper adapts the topic modeling approach of Latent Dirichlet Allocation (LDA) to uncover behavioral structure from student logs in a MITx Massive Open Online Course, 8.02x: Electricity and Magnetism. LDA is typically found in the field of natural language processing, where it identifies the latent topic structure within a collection of documents. However, this framework can be adapted for analysis of user-behavioral patterns by considering user interactions with courseware as a ``bag of interactions'' equivalent to the ``bag of words'' model found in topic modeling. By employing this representation, LDA forms probabilistic use cases that clusters students based on their behavior. Through the probability distributions associated with each use case, this approach provides an interpretable representation of user access patterns, while reducing the dimensionality of the data and improving accuracy. Using only the first week of logs, we can predict whether or not a student will earn a certificate with 0.81 ± 0.01 cross-validation accuracy. Thus, the method presented in this paper is a powerful tool in understanding user behavior and predicting outcomes.","PeriodicalId":20664,"journal":{"name":"Proceedings of the Second (2015) ACM Conference on Learning @ Scale","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":"{\"title\":\"Probabilistic Use Cases: Discovering Behavioral Patterns for Predicting Certification\",\"authors\":\"Cody A. Coleman, Daniel T. Seaton, Isaac L. Chuang\",\"doi\":\"10.1145/2724660.2724662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in open-online education have led to a dramatic increase in the size, diversity, and traceability of learner populations, offering tremendous opportunities to study detailed learning behavior of users around the world. This paper adapts the topic modeling approach of Latent Dirichlet Allocation (LDA) to uncover behavioral structure from student logs in a MITx Massive Open Online Course, 8.02x: Electricity and Magnetism. LDA is typically found in the field of natural language processing, where it identifies the latent topic structure within a collection of documents. However, this framework can be adapted for analysis of user-behavioral patterns by considering user interactions with courseware as a ``bag of interactions'' equivalent to the ``bag of words'' model found in topic modeling. By employing this representation, LDA forms probabilistic use cases that clusters students based on their behavior. Through the probability distributions associated with each use case, this approach provides an interpretable representation of user access patterns, while reducing the dimensionality of the data and improving accuracy. Using only the first week of logs, we can predict whether or not a student will earn a certificate with 0.81 ± 0.01 cross-validation accuracy. Thus, the method presented in this paper is a powerful tool in understanding user behavior and predicting outcomes.\",\"PeriodicalId\":20664,\"journal\":{\"name\":\"Proceedings of the Second (2015) ACM Conference on Learning @ Scale\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Second (2015) ACM Conference on Learning @ Scale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2724660.2724662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second (2015) ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2724660.2724662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

摘要

开放在线教育的进步导致学习者群体的规模、多样性和可追溯性急剧增加,为研究世界各地用户的详细学习行为提供了巨大的机会。本文采用潜在狄利let分配(Latent Dirichlet Allocation, LDA)的主题建模方法,从MITx大规模开放在线课程8.02x:电与磁的学生日志中揭示行为结构。LDA通常用于自然语言处理领域,用于识别文档集合中的潜在主题结构。然而,通过将用户与课件的交互视为相当于主题建模中的“词包”模型的“交互包”,这个框架可以用于分析用户行为模式。通过使用这种表示,LDA形成概率用例,根据学生的行为对他们进行聚类。通过与每个用例相关联的概率分布,该方法提供了用户访问模式的可解释表示,同时降低了数据的维数并提高了准确性。仅使用第一周的日志,我们就可以以0.81±0.01的交叉验证精度预测学生是否会获得证书。因此,本文提出的方法是理解用户行为和预测结果的有力工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic Use Cases: Discovering Behavioral Patterns for Predicting Certification
Advances in open-online education have led to a dramatic increase in the size, diversity, and traceability of learner populations, offering tremendous opportunities to study detailed learning behavior of users around the world. This paper adapts the topic modeling approach of Latent Dirichlet Allocation (LDA) to uncover behavioral structure from student logs in a MITx Massive Open Online Course, 8.02x: Electricity and Magnetism. LDA is typically found in the field of natural language processing, where it identifies the latent topic structure within a collection of documents. However, this framework can be adapted for analysis of user-behavioral patterns by considering user interactions with courseware as a ``bag of interactions'' equivalent to the ``bag of words'' model found in topic modeling. By employing this representation, LDA forms probabilistic use cases that clusters students based on their behavior. Through the probability distributions associated with each use case, this approach provides an interpretable representation of user access patterns, while reducing the dimensionality of the data and improving accuracy. Using only the first week of logs, we can predict whether or not a student will earn a certificate with 0.81 ± 0.01 cross-validation accuracy. Thus, the method presented in this paper is a powerful tool in understanding user behavior and predicting outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信