一种新的线性对流动态抗扩散方法

Ghislaine Godinaud , Alain-Yves Le Roux , Anne Riboulet
{"title":"一种新的线性对流动态抗扩散方法","authors":"Ghislaine Godinaud ,&nbsp;Alain-Yves Le Roux ,&nbsp;Anne Riboulet","doi":"10.1016/S0764-4442(00)88226-9","DOIUrl":null,"url":null,"abstract":"<div><p>A new method for the correction of diffusion effects is presented, and a proof of convergence is given. This method needs no test, no restriction on the CFL condition and is active near the extrema of the approximate solution to prevent the decrease of the amplitude of the waves. The main idea is to control the diffusion by a local projection on the first eigenfunction of the Laplace operator, and then to use this term as the source term which is convected by a side equation.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"329 8","pages":"Pages 731-734"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(00)88226-9","citationCount":"1","resultStr":"{\"title\":\"Une nouvelle méthode d'antidiffusion dynamique pour la convection linéaire\",\"authors\":\"Ghislaine Godinaud ,&nbsp;Alain-Yves Le Roux ,&nbsp;Anne Riboulet\",\"doi\":\"10.1016/S0764-4442(00)88226-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A new method for the correction of diffusion effects is presented, and a proof of convergence is given. This method needs no test, no restriction on the CFL condition and is active near the extrema of the approximate solution to prevent the decrease of the amplitude of the waves. The main idea is to control the diffusion by a local projection on the first eigenfunction of the Laplace operator, and then to use this term as the source term which is convected by a side equation.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"329 8\",\"pages\":\"Pages 731-734\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(00)88226-9\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444200882269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444200882269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种校正扩散效应的新方法,并给出了收敛性证明。该方法不需要测试,不受CFL条件的限制,并且在近似解的极值附近有效,防止了波幅值的减小。主要思想是通过拉普拉斯算子的第一个特征函数的局部投影来控制扩散,然后用这一项作为源项它被一个侧方程卷积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Une nouvelle méthode d'antidiffusion dynamique pour la convection linéaire

A new method for the correction of diffusion effects is presented, and a proof of convergence is given. This method needs no test, no restriction on the CFL condition and is active near the extrema of the approximate solution to prevent the decrease of the amplitude of the waves. The main idea is to control the diffusion by a local projection on the first eigenfunction of the Laplace operator, and then to use this term as the source term which is convected by a side equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信