从纠正演示中学习

R. Gutierrez, Elaine Schaertl Short, S. Niekum, A. Thomaz
{"title":"从纠正演示中学习","authors":"R. Gutierrez, Elaine Schaertl Short, S. Niekum, A. Thomaz","doi":"10.1109/HRI.2019.8673287","DOIUrl":null,"url":null,"abstract":"Robots deployed in human environments will inevitably encounter unmodeled scenarios which are likely to result in execution failures. To address this issue, we would like to allow co-present naive users to correct and improve the robot's behavior as these edge cases are encountered over time.","PeriodicalId":6600,"journal":{"name":"2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI)","volume":"28 1","pages":"712-714"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Learning from Corrective Demonstrations\",\"authors\":\"R. Gutierrez, Elaine Schaertl Short, S. Niekum, A. Thomaz\",\"doi\":\"10.1109/HRI.2019.8673287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robots deployed in human environments will inevitably encounter unmodeled scenarios which are likely to result in execution failures. To address this issue, we would like to allow co-present naive users to correct and improve the robot's behavior as these edge cases are encountered over time.\",\"PeriodicalId\":6600,\"journal\":{\"name\":\"2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI)\",\"volume\":\"28 1\",\"pages\":\"712-714\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HRI.2019.8673287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HRI.2019.8673287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

部署在人类环境中的机器人将不可避免地遇到未建模的场景,这可能导致执行失败。为了解决这个问题,我们希望允许共同在场的天真用户纠正和改进机器人的行为,因为这些边缘情况会随着时间的推移而遇到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning from Corrective Demonstrations
Robots deployed in human environments will inevitably encounter unmodeled scenarios which are likely to result in execution failures. To address this issue, we would like to allow co-present naive users to correct and improve the robot's behavior as these edge cases are encountered over time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信