IVN声学模型训练中基于i向量的声学嗅探判别特征提取研究

Yu Zhang, Jian Xu, Zhijie Yan, Qiang Huo
{"title":"IVN声学模型训练中基于i向量的声学嗅探判别特征提取研究","authors":"Yu Zhang, Jian Xu, Zhijie Yan, Qiang Huo","doi":"10.1109/ICASSP.2012.6288814","DOIUrl":null,"url":null,"abstract":"Recently, we proposed an i-vector approach to acoustic sniffing for irrelevant variability normalization based acoustic model training in large vocabulary continuous speech recognition (LVCSR). Its effectiveness has been confirmed by experimental results on Switchboard- 1 conversational telephone speech transcription task. In this paper, we study several discriminative feature extraction approaches in i-vector space to improve both recognition accuracy and run-time efficiency. New experimental results are reported on a much larger scale LVCSR task with about 2000 hours training data.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A study of discriminative feature extraction for i-vector based acoustic sniffing in IVN acoustic model training\",\"authors\":\"Yu Zhang, Jian Xu, Zhijie Yan, Qiang Huo\",\"doi\":\"10.1109/ICASSP.2012.6288814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, we proposed an i-vector approach to acoustic sniffing for irrelevant variability normalization based acoustic model training in large vocabulary continuous speech recognition (LVCSR). Its effectiveness has been confirmed by experimental results on Switchboard- 1 conversational telephone speech transcription task. In this paper, we study several discriminative feature extraction approaches in i-vector space to improve both recognition accuracy and run-time efficiency. New experimental results are reported on a much larger scale LVCSR task with about 2000 hours training data.\",\"PeriodicalId\":6443,\"journal\":{\"name\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2012.6288814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6288814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,我们提出了一种基于i向量的声学嗅探方法,用于大词汇量连续语音识别(LVCSR)中基于不相关可变性归一化的声学模型训练。在Switchboard- 1对话式电话语音转录任务上的实验结果证实了该方法的有效性。本文研究了几种i向量空间的判别特征提取方法,以提高识别精度和运行效率。在更大规模的LVCSR任务上,用2000小时的训练数据报道了新的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study of discriminative feature extraction for i-vector based acoustic sniffing in IVN acoustic model training
Recently, we proposed an i-vector approach to acoustic sniffing for irrelevant variability normalization based acoustic model training in large vocabulary continuous speech recognition (LVCSR). Its effectiveness has been confirmed by experimental results on Switchboard- 1 conversational telephone speech transcription task. In this paper, we study several discriminative feature extraction approaches in i-vector space to improve both recognition accuracy and run-time efficiency. New experimental results are reported on a much larger scale LVCSR task with about 2000 hours training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信