基于改进进化算法的优化门循环单元预测股市收益

Chao Liu, Fengfeng Gao, Qi Zhao, Mengwan Zhang
{"title":"基于改进进化算法的优化门循环单元预测股市收益","authors":"Chao Liu, Fengfeng Gao, Qi Zhao, Mengwan Zhang","doi":"10.1051/ro/2023029","DOIUrl":null,"url":null,"abstract":"In order to accelerate the learning ability of neural network structure parameters and improve the prediction accuracy of deep learning algorithms, an evolutionary algorithm, based on a prior Gaussian mutation(PGM) operator, is proposed to optimize the structure parameters of a gated recurrent unit (GRU) neural network. In this algorithm, the sensitivity learning process of GRU model parameters into the Gaussian mutation operator, used the variance of the GRU model parameter training results as the Gaussian mutation variance to generate the optimal individual candidate set. Then, the optimal GRU neural network structure is constructed using the evolutionary algorithm of the prior Gaussian mutation operator. Moreover, the PGM-EA-GRU algorithm is applied to the prediction of stock market returns. Experiments show that the prediction model effectively overcomes the GRU neural network, quickly falling into a local optimum and slowly converging. Compared to the RF, SVR, RNN, LSTM, GRU, and EA-GRU benchmark models, the model significantly improves the searchability and prediction accuracy of the optimal network structure parameters. It also validates the effectiveness and the progressive nature of the PGM-EA-GRU model proposed in this paper with stock market return prediction.","PeriodicalId":20872,"journal":{"name":"RAIRO Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The optimized gate recurrent unit based on improved evolutionary algorithm to predict stock market returns\",\"authors\":\"Chao Liu, Fengfeng Gao, Qi Zhao, Mengwan Zhang\",\"doi\":\"10.1051/ro/2023029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to accelerate the learning ability of neural network structure parameters and improve the prediction accuracy of deep learning algorithms, an evolutionary algorithm, based on a prior Gaussian mutation(PGM) operator, is proposed to optimize the structure parameters of a gated recurrent unit (GRU) neural network. In this algorithm, the sensitivity learning process of GRU model parameters into the Gaussian mutation operator, used the variance of the GRU model parameter training results as the Gaussian mutation variance to generate the optimal individual candidate set. Then, the optimal GRU neural network structure is constructed using the evolutionary algorithm of the prior Gaussian mutation operator. Moreover, the PGM-EA-GRU algorithm is applied to the prediction of stock market returns. Experiments show that the prediction model effectively overcomes the GRU neural network, quickly falling into a local optimum and slowly converging. Compared to the RF, SVR, RNN, LSTM, GRU, and EA-GRU benchmark models, the model significantly improves the searchability and prediction accuracy of the optimal network structure parameters. It also validates the effectiveness and the progressive nature of the PGM-EA-GRU model proposed in this paper with stock market return prediction.\",\"PeriodicalId\":20872,\"journal\":{\"name\":\"RAIRO Oper. Res.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ro/2023029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ro/2023029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了加快神经网络结构参数的学习能力,提高深度学习算法的预测精度,提出了一种基于先验高斯突变算子(PGM)的进化算法来优化门控循环单元(GRU)神经网络的结构参数。在该算法中,将GRU模型参数的敏感性学习过程转化为高斯变异算子,以GRU模型参数训练结果的方差作为高斯变异方差生成最优个体候选集。然后,利用先验高斯变异算子的进化算法构造最优GRU神经网络结构;并将PGM-EA-GRU算法应用于股票市场收益预测。实验表明,该预测模型有效地克服了GRU神经网络,快速陷入局部最优,收敛速度慢。与RF、SVR、RNN、LSTM、GRU和EA-GRU基准模型相比,该模型显著提高了最优网络结构参数的可搜索性和预测精度。并对本文提出的PGM-EA-GRU模型在股票市场收益预测中的有效性和进步性进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The optimized gate recurrent unit based on improved evolutionary algorithm to predict stock market returns
In order to accelerate the learning ability of neural network structure parameters and improve the prediction accuracy of deep learning algorithms, an evolutionary algorithm, based on a prior Gaussian mutation(PGM) operator, is proposed to optimize the structure parameters of a gated recurrent unit (GRU) neural network. In this algorithm, the sensitivity learning process of GRU model parameters into the Gaussian mutation operator, used the variance of the GRU model parameter training results as the Gaussian mutation variance to generate the optimal individual candidate set. Then, the optimal GRU neural network structure is constructed using the evolutionary algorithm of the prior Gaussian mutation operator. Moreover, the PGM-EA-GRU algorithm is applied to the prediction of stock market returns. Experiments show that the prediction model effectively overcomes the GRU neural network, quickly falling into a local optimum and slowly converging. Compared to the RF, SVR, RNN, LSTM, GRU, and EA-GRU benchmark models, the model significantly improves the searchability and prediction accuracy of the optimal network structure parameters. It also validates the effectiveness and the progressive nature of the PGM-EA-GRU model proposed in this paper with stock market return prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信