一种获得最佳分离器压力和级的新方法

A. Goodarzi, A. D. Sarvestani, A. Hadipour
{"title":"一种获得最佳分离器压力和级的新方法","authors":"A. Goodarzi, A. D. Sarvestani, A. Hadipour","doi":"10.22050/IJOGST.2019.153012.1480","DOIUrl":null,"url":null,"abstract":"Nowadays, the increasing demand for energy in the world is one of the main concerns for energy supply. In fact, the required energy can be obtained by increasing the production rate of fossil fuels such as oil and natural gas. However, improving the efficiency of the equipment and facilities might have a significant impact on production from hydrocarbon resources. With respect to this subject, the optimization of separation facilities will be a simple and economic choice to increase the amount of the liquid obtained from production units all over the world. One of the parameters which have a noticeable effect on the yield of the production units is the separator pressure. Also, there are other factors such as heptane plus fraction properties, well head pressure, and ambient temperature which can change the optimum separator conditions. In this study, the influence of crude oil properties on the number of stages and pressure of each separator is investigated. The result shows that the most important property of the feed which has the greatest influence on the conditions of separators is the percentage of heptane plus fraction in crude oil. Therefore, a method for the estimation of the number of separators based on the percentage of C7+ component is developed. Moreover, the threshold of heptane plus fraction for selecting the optimum number of separator stages was observed to be around 30% in the feed composition. Hence, three separators and a stock tank can separate samples with a C7+ molar fraction lower than 30%, but two separators and a stock tank are needed for samples with a heptane plus fraction higher than 30%. Finally, the results indicate an increase of about 1.3% in the oil production for the new optimization method compared to the constant-ratio method.","PeriodicalId":14575,"journal":{"name":"Iranian Journal of Oil and Gas Science and Technology","volume":"9 1","pages":"33-46"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Approach to Obtaining the Optimum Pressure and Stages of Separators\",\"authors\":\"A. Goodarzi, A. D. Sarvestani, A. Hadipour\",\"doi\":\"10.22050/IJOGST.2019.153012.1480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, the increasing demand for energy in the world is one of the main concerns for energy supply. In fact, the required energy can be obtained by increasing the production rate of fossil fuels such as oil and natural gas. However, improving the efficiency of the equipment and facilities might have a significant impact on production from hydrocarbon resources. With respect to this subject, the optimization of separation facilities will be a simple and economic choice to increase the amount of the liquid obtained from production units all over the world. One of the parameters which have a noticeable effect on the yield of the production units is the separator pressure. Also, there are other factors such as heptane plus fraction properties, well head pressure, and ambient temperature which can change the optimum separator conditions. In this study, the influence of crude oil properties on the number of stages and pressure of each separator is investigated. The result shows that the most important property of the feed which has the greatest influence on the conditions of separators is the percentage of heptane plus fraction in crude oil. Therefore, a method for the estimation of the number of separators based on the percentage of C7+ component is developed. Moreover, the threshold of heptane plus fraction for selecting the optimum number of separator stages was observed to be around 30% in the feed composition. Hence, three separators and a stock tank can separate samples with a C7+ molar fraction lower than 30%, but two separators and a stock tank are needed for samples with a heptane plus fraction higher than 30%. Finally, the results indicate an increase of about 1.3% in the oil production for the new optimization method compared to the constant-ratio method.\",\"PeriodicalId\":14575,\"journal\":{\"name\":\"Iranian Journal of Oil and Gas Science and Technology\",\"volume\":\"9 1\",\"pages\":\"33-46\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Oil and Gas Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22050/IJOGST.2019.153012.1480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Oil and Gas Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22050/IJOGST.2019.153012.1480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当今世界能源需求的不断增长是能源供应的主要问题之一。事实上,所需的能源可以通过提高石油和天然气等化石燃料的产量来获得。然而,提高设备和设施的效率可能会对碳氢化合物资源的生产产生重大影响。对于这个问题,优化分离设施将是一个简单而经济的选择,以增加从世界各地的生产单位获得的液体量。对生产装置的产量有显著影响的参数之一是分离器压力。此外,还有其他因素,如庚烷加馏分性质、井口压力和环境温度等,可以改变最佳分离器条件。研究了原油性质对分离器级数和压力的影响。结果表明,对分离条件影响最大的进料性能是原油中庚烷正馏分的百分率。因此,提出了一种基于C7+组分百分比估计分离器数量的方法。此外,庚烷加馏分在饲料组成中选择最佳分离段数的阈值约为30%。因此,当C7+摩尔分数低于30%时,3台分离器和1个储液罐可以分离样品,而当庚烷+摩尔分数高于30%时,则需要2台分离器和1个储液罐。最后,结果表明,与恒比方法相比,新优化方法的产油量增加了约1.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Approach to Obtaining the Optimum Pressure and Stages of Separators
Nowadays, the increasing demand for energy in the world is one of the main concerns for energy supply. In fact, the required energy can be obtained by increasing the production rate of fossil fuels such as oil and natural gas. However, improving the efficiency of the equipment and facilities might have a significant impact on production from hydrocarbon resources. With respect to this subject, the optimization of separation facilities will be a simple and economic choice to increase the amount of the liquid obtained from production units all over the world. One of the parameters which have a noticeable effect on the yield of the production units is the separator pressure. Also, there are other factors such as heptane plus fraction properties, well head pressure, and ambient temperature which can change the optimum separator conditions. In this study, the influence of crude oil properties on the number of stages and pressure of each separator is investigated. The result shows that the most important property of the feed which has the greatest influence on the conditions of separators is the percentage of heptane plus fraction in crude oil. Therefore, a method for the estimation of the number of separators based on the percentage of C7+ component is developed. Moreover, the threshold of heptane plus fraction for selecting the optimum number of separator stages was observed to be around 30% in the feed composition. Hence, three separators and a stock tank can separate samples with a C7+ molar fraction lower than 30%, but two separators and a stock tank are needed for samples with a heptane plus fraction higher than 30%. Finally, the results indicate an increase of about 1.3% in the oil production for the new optimization method compared to the constant-ratio method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信