利用一种新的变异方法提高差分进化算法的效率

Milad Ghahramani, Abolfazl Laakdashti
{"title":"利用一种新的变异方法提高差分进化算法的效率","authors":"Milad Ghahramani, Abolfazl Laakdashti","doi":"10.1109/ICCKE48569.2019.8964840","DOIUrl":null,"url":null,"abstract":"The differential evolution algorithm is one of the fast, efficient, and strong population-based algorithms, which has extended applications in solving various problems. Although the velocity, power, and efficiency of this algorithm have been demonstrated in solving many optimization problems, this algorithm, like other metaheuristic algorithms, is not guaranteed to achieve the global optimal points of the optimization problems and may be ceased at optimal local points. One of the reasons for stopping the algorithm at the local optimum points is the imbalance between the exploration and exploitation abilities of the algorithm. One of the operators of the differential evolution algorithm, which plays an essential role in establishing the proper balance between the exploitation and exploitation of the algorithm, is the mutation operator. In this paper, a new mutation method is proposed to improve the efficiency of the differential evolution algorithm to make an appropriate balance between the exploitation and exploitation abilities of the algorithm. Comparing the results of the proposed mutation method with other mutation methods indicates that the proposed method has better speed and accuracy convergence rather than other methods, and it can be employed to solve large-scale optimization problems.","PeriodicalId":6685,"journal":{"name":"2019 9th International Conference on Computer and Knowledge Engineering (ICCKE)","volume":"97 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficiency Improvement of Differential Evolution Algorithm Using a Novel Mutation Method\",\"authors\":\"Milad Ghahramani, Abolfazl Laakdashti\",\"doi\":\"10.1109/ICCKE48569.2019.8964840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The differential evolution algorithm is one of the fast, efficient, and strong population-based algorithms, which has extended applications in solving various problems. Although the velocity, power, and efficiency of this algorithm have been demonstrated in solving many optimization problems, this algorithm, like other metaheuristic algorithms, is not guaranteed to achieve the global optimal points of the optimization problems and may be ceased at optimal local points. One of the reasons for stopping the algorithm at the local optimum points is the imbalance between the exploration and exploitation abilities of the algorithm. One of the operators of the differential evolution algorithm, which plays an essential role in establishing the proper balance between the exploitation and exploitation of the algorithm, is the mutation operator. In this paper, a new mutation method is proposed to improve the efficiency of the differential evolution algorithm to make an appropriate balance between the exploitation and exploitation abilities of the algorithm. Comparing the results of the proposed mutation method with other mutation methods indicates that the proposed method has better speed and accuracy convergence rather than other methods, and it can be employed to solve large-scale optimization problems.\",\"PeriodicalId\":6685,\"journal\":{\"name\":\"2019 9th International Conference on Computer and Knowledge Engineering (ICCKE)\",\"volume\":\"97 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 9th International Conference on Computer and Knowledge Engineering (ICCKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCKE48569.2019.8964840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 9th International Conference on Computer and Knowledge Engineering (ICCKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCKE48569.2019.8964840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

差分进化算法是一种快速、高效、强的基于种群的算法,在求解各种问题中得到了广泛的应用。虽然该算法的速度、功率和效率在解决许多优化问题中得到了证明,但与其他元启发式算法一样,该算法不能保证达到优化问题的全局最优点,并且可能在局部最优点处停止。算法在局部最优点处停止的原因之一是算法的探索能力和开发能力不平衡。变异算子是差分进化算法的算子之一,它对建立算法的利用和利用之间的适当平衡起着至关重要的作用。本文提出了一种新的突变方法来提高差分进化算法的效率,在算法的开发和开发能力之间取得适当的平衡。将所提出的变异方法与其他变异方法的结果进行比较,结果表明所提出的变异方法具有更好的速度和收敛精度,可用于解决大规模的优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficiency Improvement of Differential Evolution Algorithm Using a Novel Mutation Method
The differential evolution algorithm is one of the fast, efficient, and strong population-based algorithms, which has extended applications in solving various problems. Although the velocity, power, and efficiency of this algorithm have been demonstrated in solving many optimization problems, this algorithm, like other metaheuristic algorithms, is not guaranteed to achieve the global optimal points of the optimization problems and may be ceased at optimal local points. One of the reasons for stopping the algorithm at the local optimum points is the imbalance between the exploration and exploitation abilities of the algorithm. One of the operators of the differential evolution algorithm, which plays an essential role in establishing the proper balance between the exploitation and exploitation of the algorithm, is the mutation operator. In this paper, a new mutation method is proposed to improve the efficiency of the differential evolution algorithm to make an appropriate balance between the exploitation and exploitation abilities of the algorithm. Comparing the results of the proposed mutation method with other mutation methods indicates that the proposed method has better speed and accuracy convergence rather than other methods, and it can be employed to solve large-scale optimization problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信