内皮素1与人内皮素B型受体分子相互作用的自由能格局:飞投机制。

Junichi Higo, Kota Kasahara, Mitsuhito Wada, Bhaskar Dasgupta, Narutoshi Kamiya, Tomonori Hayami, Ikuo Fukuda, Yoshifumi Fukunishi, Haruki Nakamura
{"title":"内皮素1与人内皮素B型受体分子相互作用的自由能格局:飞投机制。","authors":"Junichi Higo, Kota Kasahara, Mitsuhito Wada, Bhaskar Dasgupta, Narutoshi Kamiya, Tomonori Hayami, Ikuo Fukuda, Yoshifumi Fukunishi, Haruki Nakamura","doi":"10.1093/protein/gzz029","DOIUrl":null,"url":null,"abstract":"<p><p>The free-energy landscape of interaction between a medium-sized peptide, endothelin 1 (ET1), and its receptor, human endothelin type B receptor (hETB), was computed using multidimensional virtual-system coupled molecular dynamics, which controls the system's motions by introducing multiple reaction coordinates. The hETB embedded in lipid bilayer was immersed in explicit solvent. All molecules were expressed as all-atom models. The resultant free-energy landscape had five ranges with decreasing ET1-hETB distance: completely dissociative, outside-gate, gate, binding pocket, and genuine-bound ranges. In the completely dissociative range, no ET1-hETB interaction appeared. In the outside-gate range, an ET1-hETB attractive interaction was the fly-casting mechanism. In the gate range, the ET1 orientational variety decreased rapidly. In the binding pocket range, ET1 was in a narrow pathway with a steep free-energy slope. In the genuine-bound range, ET1 was in a stable free-energy basin. A G-protein-coupled receptor (GPCR) might capture its ligand from a distant place.</p>","PeriodicalId":20681,"journal":{"name":"Protein Engineering, Design and Selection","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/protein/gzz029","citationCount":"11","resultStr":"{\"title\":\"Free-energy landscape of molecular interactions between endothelin 1 and human endothelin type B receptor: fly-casting mechanism.\",\"authors\":\"Junichi Higo, Kota Kasahara, Mitsuhito Wada, Bhaskar Dasgupta, Narutoshi Kamiya, Tomonori Hayami, Ikuo Fukuda, Yoshifumi Fukunishi, Haruki Nakamura\",\"doi\":\"10.1093/protein/gzz029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The free-energy landscape of interaction between a medium-sized peptide, endothelin 1 (ET1), and its receptor, human endothelin type B receptor (hETB), was computed using multidimensional virtual-system coupled molecular dynamics, which controls the system's motions by introducing multiple reaction coordinates. The hETB embedded in lipid bilayer was immersed in explicit solvent. All molecules were expressed as all-atom models. The resultant free-energy landscape had five ranges with decreasing ET1-hETB distance: completely dissociative, outside-gate, gate, binding pocket, and genuine-bound ranges. In the completely dissociative range, no ET1-hETB interaction appeared. In the outside-gate range, an ET1-hETB attractive interaction was the fly-casting mechanism. In the gate range, the ET1 orientational variety decreased rapidly. In the binding pocket range, ET1 was in a narrow pathway with a steep free-energy slope. In the genuine-bound range, ET1 was in a stable free-energy basin. A G-protein-coupled receptor (GPCR) might capture its ligand from a distant place.</p>\",\"PeriodicalId\":20681,\"journal\":{\"name\":\"Protein Engineering, Design and Selection\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/protein/gzz029\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Engineering, Design and Selection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/protein/gzz029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Engineering, Design and Selection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/protein/gzz029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

利用多维虚拟系统耦合分子动力学计算了中等大小肽内皮素1 (ET1)与其受体人内皮素B型受体(hETB)之间相互作用的自由能格局,该动力学通过引入多个反应坐标来控制系统的运动。将嵌入脂质双分子层的hETB浸入外显溶剂中。所有分子都表示为全原子模型。随着ET1-hETB距离的减小,得到的自由能景观有5个范围:完全解离、外门、门、结合口袋和真正结合范围。在完全解离范围内,未出现ET1-hETB相互作用。在外-门范围内,ET1-hETB吸引相互作用是飞铸机制。在栅极范围内,ET1取向变化迅速减小。在结合口袋范围内,ET1路径狭窄,自由能斜率陡。在真实限定范围内,ET1处于稳定的自由能盆地。g蛋白偶联受体(GPCR)可能从远处捕获其配体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Free-energy landscape of molecular interactions between endothelin 1 and human endothelin type B receptor: fly-casting mechanism.

The free-energy landscape of interaction between a medium-sized peptide, endothelin 1 (ET1), and its receptor, human endothelin type B receptor (hETB), was computed using multidimensional virtual-system coupled molecular dynamics, which controls the system's motions by introducing multiple reaction coordinates. The hETB embedded in lipid bilayer was immersed in explicit solvent. All molecules were expressed as all-atom models. The resultant free-energy landscape had five ranges with decreasing ET1-hETB distance: completely dissociative, outside-gate, gate, binding pocket, and genuine-bound ranges. In the completely dissociative range, no ET1-hETB interaction appeared. In the outside-gate range, an ET1-hETB attractive interaction was the fly-casting mechanism. In the gate range, the ET1 orientational variety decreased rapidly. In the binding pocket range, ET1 was in a narrow pathway with a steep free-energy slope. In the genuine-bound range, ET1 was in a stable free-energy basin. A G-protein-coupled receptor (GPCR) might capture its ligand from a distant place.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信