纯Neumann问题在类柱域上的渐近性质及其应用

Asymptot. Anal. Pub Date : 2018-06-07 DOI:10.3233/ASY-181462
M. Chipot, S. Zube
{"title":"纯Neumann问题在类柱域上的渐近性质及其应用","authors":"M. Chipot, S. Zube","doi":"10.3233/ASY-181462","DOIUrl":null,"url":null,"abstract":"We consider in this paper the pure Neumann problem in n-dimensional cylinder-like domains. We are interested in the asymptotic behaviour of the solution of this kind of problems when the domain becomes infinite in p-directions, 1 ≤ p < n. We show that this solution converges exponentially to the solution of a Neumann problem in the corresponding unbounded domain. We distinguish between the case p = 1 and 1 < p < n the latter requiring a more involved analysis. For p = 1 we consider also the special situation when the domain and the initial data are periodic.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"1 1","pages":"163-185"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On the asymptotic behaviour of the pure Neumann problem in cylinder-like domains and its applications\",\"authors\":\"M. Chipot, S. Zube\",\"doi\":\"10.3233/ASY-181462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider in this paper the pure Neumann problem in n-dimensional cylinder-like domains. We are interested in the asymptotic behaviour of the solution of this kind of problems when the domain becomes infinite in p-directions, 1 ≤ p < n. We show that this solution converges exponentially to the solution of a Neumann problem in the corresponding unbounded domain. We distinguish between the case p = 1 and 1 < p < n the latter requiring a more involved analysis. For p = 1 we consider also the special situation when the domain and the initial data are periodic.\",\"PeriodicalId\":8603,\"journal\":{\"name\":\"Asymptot. Anal.\",\"volume\":\"1 1\",\"pages\":\"163-185\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptot. Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ASY-181462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-181462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了n维类柱域上的纯诺伊曼问题。我们对这类问题的解在p方向无限大,1≤p < n时的渐近行为感兴趣。我们证明了这种解在相应的无界区域内指数收敛于Neumann问题的解。我们区分p = 1和1 < p < n的情况,后者需要更复杂的分析。当p = 1时,我们还考虑了定义域和初始数据是周期性的特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the asymptotic behaviour of the pure Neumann problem in cylinder-like domains and its applications
We consider in this paper the pure Neumann problem in n-dimensional cylinder-like domains. We are interested in the asymptotic behaviour of the solution of this kind of problems when the domain becomes infinite in p-directions, 1 ≤ p < n. We show that this solution converges exponentially to the solution of a Neumann problem in the corresponding unbounded domain. We distinguish between the case p = 1 and 1 < p < n the latter requiring a more involved analysis. For p = 1 we consider also the special situation when the domain and the initial data are periodic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信