波传播模型中的遗传与非定域性

IF 0.7 Q4 MECHANICS
D. Zorica
{"title":"波传播模型中的遗传与非定域性","authors":"D. Zorica","doi":"10.2298/tam200116005z","DOIUrl":null,"url":null,"abstract":"The classical wave equation is generalized within the framework of fractional calculus in order to account for the memory and non-local effects that might be material features. Both effects are included in the constitutive equation, while the equation of motion of the deformable body and strain are left unchanged. Memory effects in viscoelastic materials are modeled through the distributed-order fractional constitutive equation that generalizes all linear models having differentiation orders up to order one. The microlocal approach in analyzing singularity propagation is utilized in the case of viscoelastic material described by the fractional Zener model, as well as in the case of two non-local models: non-local Hookean and fractional Eringen.","PeriodicalId":44059,"journal":{"name":"Theoretical and Applied Mechanics","volume":"67 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hereditariness and non-locality in wave propagation modeling\",\"authors\":\"D. Zorica\",\"doi\":\"10.2298/tam200116005z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classical wave equation is generalized within the framework of fractional calculus in order to account for the memory and non-local effects that might be material features. Both effects are included in the constitutive equation, while the equation of motion of the deformable body and strain are left unchanged. Memory effects in viscoelastic materials are modeled through the distributed-order fractional constitutive equation that generalizes all linear models having differentiation orders up to order one. The microlocal approach in analyzing singularity propagation is utilized in the case of viscoelastic material described by the fractional Zener model, as well as in the case of two non-local models: non-local Hookean and fractional Eringen.\",\"PeriodicalId\":44059,\"journal\":{\"name\":\"Theoretical and Applied Mechanics\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/tam200116005z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/tam200116005z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

摘要

经典波动方程在分数阶微积分的框架内进行了推广,以解释可能是材料特征的记忆和非局部效应。这两种影响都包含在本构方程中,而变形体的运动方程和应变保持不变。粘弹性材料中的记忆效应是通过分布阶分数本构方程来建模的,该方程推广了所有微分阶为一阶的线性模型。对于分数阶齐纳模型描述的粘弹性材料,以及非局部Hookean和分数阶Eringen两种非局部模型,采用微局部方法分析奇异传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hereditariness and non-locality in wave propagation modeling
The classical wave equation is generalized within the framework of fractional calculus in order to account for the memory and non-local effects that might be material features. Both effects are included in the constitutive equation, while the equation of motion of the deformable body and strain are left unchanged. Memory effects in viscoelastic materials are modeled through the distributed-order fractional constitutive equation that generalizes all linear models having differentiation orders up to order one. The microlocal approach in analyzing singularity propagation is utilized in the case of viscoelastic material described by the fractional Zener model, as well as in the case of two non-local models: non-local Hookean and fractional Eringen.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
4
审稿时长
32 weeks
期刊介绍: Theoretical and Applied Mechanics (TAM) invites submission of original scholarly work in all fields of theoretical and applied mechanics. TAM features selected high quality research articles that represent the broad spectrum of interest in mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信