{"title":"氢引领绿色能源的未来","authors":"Ashutosh Tiwari","doi":"10.5185/amlett.2022.021690","DOIUrl":null,"url":null,"abstract":"limate change evolving as the major concern erratic weather conditions for example heavy rains drought floods, landslides, soil erosion, tsunami, and extreme cold and warm weather, which severely impact the livelihoods of the mankind. Attaining the substance by reducing carbon pollution and other greenhouse gases is the best way to control climate change [1]. Considering the suitable climate, habitat variation, and their adverse effects such as glaciers, heatwave, sea levels rise, etc., it is important to understand the climate control and framing combat policy as per the requirement of energy. Biofuels reduce greenhouse gases extensively in comparison to fossil fuels for transport [2]. The selection of energy technology is critical to achieve the net-zero emission [3]. Energy crisis is a prominent challenge across the globe. Searching and adopting other technologies and sources for energy exploitation may bring risks and challenges [4,5]. However, energy demands increasing day by day, and the exploitation of natural resources for energy extraction, making the environment worst. The importance of armed violence in nurturing environmental degradation and the ecological imbalance was studied [6]. Now, country-wise policy for renewable, and net-zero power generation is much required in line with sustainability [7]. The most abundant element of the globe is hydrogen, which has a universal presence in water, oil, and natural gases. Hydrogen is now established as a clean and flexible energy carrier [8]. Europe and the other nations are progressively walking toward achieving the net-zero objective with the overview of clean hydrogen energy, which will ensure global sustainability faster [9]. The International Association of Advanced Materials, IAAM also orchestrates its goal with the European Green Deal through policy initiatives [10]. Hydrogen utilization for transport, power, and building sectors will not pollute the air and fulfil the sustainability agenda sooner. World-leading organizations also initiated hydrogen research to solve climate issues [11]. The utilization of biowaste for the generation of net-zero energy and hydrogen as commercially used fuels to create a sustainable energy system is the demand of the hour [12]. Therefore, a well-developed hydrogen production infrastructure is best for energy carriers and storage across the globe. Although, efforts need more efficient technology, innovation, policy, and management for utilization in the energy sector. Further, despite numerous limiting factors research institutions and industrial players have taken the challenge with a politically driven agenda to combat climate neutrality.","PeriodicalId":7281,"journal":{"name":"Advanced Materials Letters","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Hydrogen Leading the Green Energy Future\",\"authors\":\"Ashutosh Tiwari\",\"doi\":\"10.5185/amlett.2022.021690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"limate change evolving as the major concern erratic weather conditions for example heavy rains drought floods, landslides, soil erosion, tsunami, and extreme cold and warm weather, which severely impact the livelihoods of the mankind. Attaining the substance by reducing carbon pollution and other greenhouse gases is the best way to control climate change [1]. Considering the suitable climate, habitat variation, and their adverse effects such as glaciers, heatwave, sea levels rise, etc., it is important to understand the climate control and framing combat policy as per the requirement of energy. Biofuels reduce greenhouse gases extensively in comparison to fossil fuels for transport [2]. The selection of energy technology is critical to achieve the net-zero emission [3]. Energy crisis is a prominent challenge across the globe. Searching and adopting other technologies and sources for energy exploitation may bring risks and challenges [4,5]. However, energy demands increasing day by day, and the exploitation of natural resources for energy extraction, making the environment worst. The importance of armed violence in nurturing environmental degradation and the ecological imbalance was studied [6]. Now, country-wise policy for renewable, and net-zero power generation is much required in line with sustainability [7]. The most abundant element of the globe is hydrogen, which has a universal presence in water, oil, and natural gases. Hydrogen is now established as a clean and flexible energy carrier [8]. Europe and the other nations are progressively walking toward achieving the net-zero objective with the overview of clean hydrogen energy, which will ensure global sustainability faster [9]. The International Association of Advanced Materials, IAAM also orchestrates its goal with the European Green Deal through policy initiatives [10]. Hydrogen utilization for transport, power, and building sectors will not pollute the air and fulfil the sustainability agenda sooner. World-leading organizations also initiated hydrogen research to solve climate issues [11]. The utilization of biowaste for the generation of net-zero energy and hydrogen as commercially used fuels to create a sustainable energy system is the demand of the hour [12]. Therefore, a well-developed hydrogen production infrastructure is best for energy carriers and storage across the globe. Although, efforts need more efficient technology, innovation, policy, and management for utilization in the energy sector. Further, despite numerous limiting factors research institutions and industrial players have taken the challenge with a politically driven agenda to combat climate neutrality.\",\"PeriodicalId\":7281,\"journal\":{\"name\":\"Advanced Materials Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5185/amlett.2022.021690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5185/amlett.2022.021690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
limate change evolving as the major concern erratic weather conditions for example heavy rains drought floods, landslides, soil erosion, tsunami, and extreme cold and warm weather, which severely impact the livelihoods of the mankind. Attaining the substance by reducing carbon pollution and other greenhouse gases is the best way to control climate change [1]. Considering the suitable climate, habitat variation, and their adverse effects such as glaciers, heatwave, sea levels rise, etc., it is important to understand the climate control and framing combat policy as per the requirement of energy. Biofuels reduce greenhouse gases extensively in comparison to fossil fuels for transport [2]. The selection of energy technology is critical to achieve the net-zero emission [3]. Energy crisis is a prominent challenge across the globe. Searching and adopting other technologies and sources for energy exploitation may bring risks and challenges [4,5]. However, energy demands increasing day by day, and the exploitation of natural resources for energy extraction, making the environment worst. The importance of armed violence in nurturing environmental degradation and the ecological imbalance was studied [6]. Now, country-wise policy for renewable, and net-zero power generation is much required in line with sustainability [7]. The most abundant element of the globe is hydrogen, which has a universal presence in water, oil, and natural gases. Hydrogen is now established as a clean and flexible energy carrier [8]. Europe and the other nations are progressively walking toward achieving the net-zero objective with the overview of clean hydrogen energy, which will ensure global sustainability faster [9]. The International Association of Advanced Materials, IAAM also orchestrates its goal with the European Green Deal through policy initiatives [10]. Hydrogen utilization for transport, power, and building sectors will not pollute the air and fulfil the sustainability agenda sooner. World-leading organizations also initiated hydrogen research to solve climate issues [11]. The utilization of biowaste for the generation of net-zero energy and hydrogen as commercially used fuels to create a sustainable energy system is the demand of the hour [12]. Therefore, a well-developed hydrogen production infrastructure is best for energy carriers and storage across the globe. Although, efforts need more efficient technology, innovation, policy, and management for utilization in the energy sector. Further, despite numerous limiting factors research institutions and industrial players have taken the challenge with a politically driven agenda to combat climate neutrality.