基于spr的树调和:非二叉树和多解

Cuong V. Than, L. Nakhleh
{"title":"基于spr的树调和:非二叉树和多解","authors":"Cuong V. Than, L. Nakhleh","doi":"10.1142/9781848161092_0027","DOIUrl":null,"url":null,"abstract":"The SPR (subtree prune and regraft) operation is used as the basis for reconciling incongruent phylogenetic trees, particularly for detecting and analyzing non-treelike evolutionary histories such as horizontal gene transfer, hybrid speciation, and recombination. The SPR-based tree reconciliation problem has been shown to be NP-hard, and several efficient heuristics have been designed to solve it. A major drawback of these heuristics is that for the most part they do not handle non-binary trees appropriately. Further, their computational efficiency suffers significantly when computing multiple optimal reconciliations. In this paper, we present algorithmic techniques for efficient SPR-based reconciliation of trees that are not necessarily binary. Further, we present divide-and-conquer approaches that enable efficient computing of multiple optimal reconciliations. We have implemented our techniques in the PhyloNet software package, which is publicly available at http://bioinfo.cs.rice.edu. The resulting method outperforms all existing methods in terms of speed, and performs at least as well as those methods in terms of accuracy.","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"98 1","pages":"251-260"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"SPR-based Tree Reconciliation: Non-binary Trees and Multiple Solutions\",\"authors\":\"Cuong V. Than, L. Nakhleh\",\"doi\":\"10.1142/9781848161092_0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The SPR (subtree prune and regraft) operation is used as the basis for reconciling incongruent phylogenetic trees, particularly for detecting and analyzing non-treelike evolutionary histories such as horizontal gene transfer, hybrid speciation, and recombination. The SPR-based tree reconciliation problem has been shown to be NP-hard, and several efficient heuristics have been designed to solve it. A major drawback of these heuristics is that for the most part they do not handle non-binary trees appropriately. Further, their computational efficiency suffers significantly when computing multiple optimal reconciliations. In this paper, we present algorithmic techniques for efficient SPR-based reconciliation of trees that are not necessarily binary. Further, we present divide-and-conquer approaches that enable efficient computing of multiple optimal reconciliations. We have implemented our techniques in the PhyloNet software package, which is publicly available at http://bioinfo.cs.rice.edu. The resulting method outperforms all existing methods in terms of speed, and performs at least as well as those methods in terms of accuracy.\",\"PeriodicalId\":74513,\"journal\":{\"name\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"volume\":\"98 1\",\"pages\":\"251-260\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9781848161092_0027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781848161092_0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

SPR(子树修剪和再嫁接)操作被用作协调不一致的系统发育树的基础,特别是用于检测和分析非树状进化历史,如水平基因转移、杂交物种形成和重组。基于spr的树调和问题已被证明是np困难的,并且设计了几种有效的启发式方法来解决它。这些启发式的一个主要缺点是,在大多数情况下,它们不能适当地处理非二叉树。此外,当计算多个最优调和时,它们的计算效率会受到显著影响。在本文中,我们提出了一种算法技术,可以有效地对不一定是二值的树进行基于spr的和解。此外,我们提出了分而治之的方法,使多个最优调和的有效计算。我们已经在PhyloNet软件包中实现了我们的技术,该软件包可在http://bioinfo.cs.rice.edu上公开获得。由此产生的方法在速度方面优于所有现有方法,并且在准确性方面至少与这些方法一样好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SPR-based Tree Reconciliation: Non-binary Trees and Multiple Solutions
The SPR (subtree prune and regraft) operation is used as the basis for reconciling incongruent phylogenetic trees, particularly for detecting and analyzing non-treelike evolutionary histories such as horizontal gene transfer, hybrid speciation, and recombination. The SPR-based tree reconciliation problem has been shown to be NP-hard, and several efficient heuristics have been designed to solve it. A major drawback of these heuristics is that for the most part they do not handle non-binary trees appropriately. Further, their computational efficiency suffers significantly when computing multiple optimal reconciliations. In this paper, we present algorithmic techniques for efficient SPR-based reconciliation of trees that are not necessarily binary. Further, we present divide-and-conquer approaches that enable efficient computing of multiple optimal reconciliations. We have implemented our techniques in the PhyloNet software package, which is publicly available at http://bioinfo.cs.rice.edu. The resulting method outperforms all existing methods in terms of speed, and performs at least as well as those methods in terms of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信