两种蠕变断裂模型的分析

V. Nazarov
{"title":"两种蠕变断裂模型的分析","authors":"V. Nazarov","doi":"10.17804/2410-9908.2019.5.073-080","DOIUrl":null,"url":null,"abstract":"Various invariants of the stress tensor (maximum normal stress, Mises equivalent stress, doubled maximum tangential stress) are considered, as well as their linear combinations with one material parameter, when approximating the experimental creep rupture data obtained under a complex stress state. The error of the total discrepancy between the experimental data and the approximating values is always less for linear combinations with the material parameter than for the basic invariants of the stress tensor. This determines the predominant practical use of these linear combinations with the parameter. In this paper, we consider two models for describing the creep-rupture process under a complex stress state. One is a linear combination of the Mises equivalent stress and the maximum normal stress. The other is a linear combination of the doubled maximum tangential stress and the maximum normal stress. The effect of each of the two maximum stresses on the rupture time is established from the analysis of the results of the statistical processing of experimental data obtained under tension and torsion of tubular specimens.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":"91 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ANALYSIS OF TWO CREEP RUPTURE MODEL\",\"authors\":\"V. Nazarov\",\"doi\":\"10.17804/2410-9908.2019.5.073-080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various invariants of the stress tensor (maximum normal stress, Mises equivalent stress, doubled maximum tangential stress) are considered, as well as their linear combinations with one material parameter, when approximating the experimental creep rupture data obtained under a complex stress state. The error of the total discrepancy between the experimental data and the approximating values is always less for linear combinations with the material parameter than for the basic invariants of the stress tensor. This determines the predominant practical use of these linear combinations with the parameter. In this paper, we consider two models for describing the creep-rupture process under a complex stress state. One is a linear combination of the Mises equivalent stress and the maximum normal stress. The other is a linear combination of the doubled maximum tangential stress and the maximum normal stress. The effect of each of the two maximum stresses on the rupture time is established from the analysis of the results of the statistical processing of experimental data obtained under tension and torsion of tubular specimens.\",\"PeriodicalId\":11165,\"journal\":{\"name\":\"Diagnostics, Resource and Mechanics of materials and structures\",\"volume\":\"91 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostics, Resource and Mechanics of materials and structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17804/2410-9908.2019.5.073-080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics, Resource and Mechanics of materials and structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17804/2410-9908.2019.5.073-080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在模拟复杂应力状态下的蠕变破裂实验数据时,考虑了应力张量的各种不变量(最大法向应力、米塞斯等效应力、倍最大切向应力)及其与一个材料参数的线性组合。与材料参数线性组合的实验数据与近似值的总差误差总是小于应力张量的基本不变量。这就决定了这些带参数的线性组合的主要实际用途。本文考虑两种模型来描述复杂应力状态下的蠕变-破裂过程。一种是米塞斯等效应力与最大法向应力的线性组合。另一种是最大切向应力和最大法向应力的两倍线性组合。通过对管状试件拉扭试验数据的统计处理结果分析,建立了两个最大应力对断裂时间的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANALYSIS OF TWO CREEP RUPTURE MODEL
Various invariants of the stress tensor (maximum normal stress, Mises equivalent stress, doubled maximum tangential stress) are considered, as well as their linear combinations with one material parameter, when approximating the experimental creep rupture data obtained under a complex stress state. The error of the total discrepancy between the experimental data and the approximating values is always less for linear combinations with the material parameter than for the basic invariants of the stress tensor. This determines the predominant practical use of these linear combinations with the parameter. In this paper, we consider two models for describing the creep-rupture process under a complex stress state. One is a linear combination of the Mises equivalent stress and the maximum normal stress. The other is a linear combination of the doubled maximum tangential stress and the maximum normal stress. The effect of each of the two maximum stresses on the rupture time is established from the analysis of the results of the statistical processing of experimental data obtained under tension and torsion of tubular specimens.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信