{"title":"湍流预混火焰中标量耗散率输运的局部应变率和曲率依赖关系:直接数值模拟分析","authors":"Y. Gao, N. Chakraborty, N. Swaminathan","doi":"10.1155/2014/280671","DOIUrl":null,"url":null,"abstract":"The statistical behaviours of the instantaneous scalar dissipation rate of reaction progress variable in turbulent premixed flames have been analysed based on three-dimensional direct numerical simulation data of freely propagating statistically planar flame and V-flame configurations with different turbulent Reynolds number . The statistical behaviours of and different terms of its transport equation for planar and V-flames are found to be qualitatively similar. The mean contribution of the density-variation term is positive, whereas the molecular dissipation term acts as a leading order sink. The mean contribution of the strain rate term is predominantly negative for the cases considered here. The mean reaction rate contribution is positive (negative) towards the unburned (burned) gas side of the flame, whereas the mean contribution of the diffusivity gradient term assumes negative (positive) values towards the unburned (burned) gas side. The local statistical behaviours of , , , , , and have been analysed in terms of their marginal probability density functions (pdfs) and their joint pdfs with local tangential strain rate and curvature . Detailed physical explanations have been provided for the observed behaviour.","PeriodicalId":44364,"journal":{"name":"Journal of Combustion","volume":"27 1","pages":"1-29"},"PeriodicalIF":1.5000,"publicationDate":"2014-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Local Strain Rate and Curvature Dependences of Scalar Dissipation Rate Transport in Turbulent Premixed Flames: A Direct Numerical Simulation Analysis\",\"authors\":\"Y. Gao, N. Chakraborty, N. Swaminathan\",\"doi\":\"10.1155/2014/280671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The statistical behaviours of the instantaneous scalar dissipation rate of reaction progress variable in turbulent premixed flames have been analysed based on three-dimensional direct numerical simulation data of freely propagating statistically planar flame and V-flame configurations with different turbulent Reynolds number . The statistical behaviours of and different terms of its transport equation for planar and V-flames are found to be qualitatively similar. The mean contribution of the density-variation term is positive, whereas the molecular dissipation term acts as a leading order sink. The mean contribution of the strain rate term is predominantly negative for the cases considered here. The mean reaction rate contribution is positive (negative) towards the unburned (burned) gas side of the flame, whereas the mean contribution of the diffusivity gradient term assumes negative (positive) values towards the unburned (burned) gas side. The local statistical behaviours of , , , , , and have been analysed in terms of their marginal probability density functions (pdfs) and their joint pdfs with local tangential strain rate and curvature . Detailed physical explanations have been provided for the observed behaviour.\",\"PeriodicalId\":44364,\"journal\":{\"name\":\"Journal of Combustion\",\"volume\":\"27 1\",\"pages\":\"1-29\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2014-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combustion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2014/280671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combustion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/280671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Local Strain Rate and Curvature Dependences of Scalar Dissipation Rate Transport in Turbulent Premixed Flames: A Direct Numerical Simulation Analysis
The statistical behaviours of the instantaneous scalar dissipation rate of reaction progress variable in turbulent premixed flames have been analysed based on three-dimensional direct numerical simulation data of freely propagating statistically planar flame and V-flame configurations with different turbulent Reynolds number . The statistical behaviours of and different terms of its transport equation for planar and V-flames are found to be qualitatively similar. The mean contribution of the density-variation term is positive, whereas the molecular dissipation term acts as a leading order sink. The mean contribution of the strain rate term is predominantly negative for the cases considered here. The mean reaction rate contribution is positive (negative) towards the unburned (burned) gas side of the flame, whereas the mean contribution of the diffusivity gradient term assumes negative (positive) values towards the unburned (burned) gas side. The local statistical behaviours of , , , , , and have been analysed in terms of their marginal probability density functions (pdfs) and their joint pdfs with local tangential strain rate and curvature . Detailed physical explanations have been provided for the observed behaviour.