基于gpu的Smith-Waterman算法的OpenCL实现

Infinity Pub Date : 2010-09-30 DOI:10.1109/PDMC-HIBI.2010.16
Dzmitry Razmyslovich, G. Marcus, M. Gipp, M. Zapatka, Andreas Szillus
{"title":"基于gpu的Smith-Waterman算法的OpenCL实现","authors":"Dzmitry Razmyslovich, G. Marcus, M. Gipp, M. Zapatka, Andreas Szillus","doi":"10.1109/PDMC-HIBI.2010.16","DOIUrl":null,"url":null,"abstract":"In this paper we present an implementation of the Smith-Waterman algorithm. The implementation is done in OpenCL and targets high-end GPUs. This implementation is capable of computing similarity indexes between reference and query sequences. The implementation is designed for the sequence alignment paths calculation. In addition, it is capable of handling very long reference sequences (in the order of millions of nucleotides), a requirement for the target application in cancer research. Performance compares favorably against CPU, being on the order of 9 - 130 times faster, 3 times faster than the CUDA-enabled CUDASW++v2.0 for medium sequences or larger. Additionally, it is on par with Farrar's performance, but with less constraints in sequence length.","PeriodicalId":31175,"journal":{"name":"Infinity","volume":"21 1","pages":"48-56"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Implementation of Smith-Waterman Algorithm in OpenCL for GPUs\",\"authors\":\"Dzmitry Razmyslovich, G. Marcus, M. Gipp, M. Zapatka, Andreas Szillus\",\"doi\":\"10.1109/PDMC-HIBI.2010.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an implementation of the Smith-Waterman algorithm. The implementation is done in OpenCL and targets high-end GPUs. This implementation is capable of computing similarity indexes between reference and query sequences. The implementation is designed for the sequence alignment paths calculation. In addition, it is capable of handling very long reference sequences (in the order of millions of nucleotides), a requirement for the target application in cancer research. Performance compares favorably against CPU, being on the order of 9 - 130 times faster, 3 times faster than the CUDA-enabled CUDASW++v2.0 for medium sequences or larger. Additionally, it is on par with Farrar's performance, but with less constraints in sequence length.\",\"PeriodicalId\":31175,\"journal\":{\"name\":\"Infinity\",\"volume\":\"21 1\",\"pages\":\"48-56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infinity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDMC-HIBI.2010.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infinity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDMC-HIBI.2010.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文给出了Smith-Waterman算法的一个实现。该实现是在OpenCL中完成的,目标是高端gpu。该实现能够计算引用序列和查询序列之间的相似度索引。该实现针对序列比对路径的计算进行了设计。此外,它能够处理非常长的参考序列(数以百万计的核苷酸),这是癌症研究中目标应用的要求。性能优于CPU,速度快9 - 130倍,对于中等或更大的序列,比cuda支持的cudasw++ v2.0快3倍。此外,它与Farrar的性能相当,但对序列长度的限制较少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of Smith-Waterman Algorithm in OpenCL for GPUs
In this paper we present an implementation of the Smith-Waterman algorithm. The implementation is done in OpenCL and targets high-end GPUs. This implementation is capable of computing similarity indexes between reference and query sequences. The implementation is designed for the sequence alignment paths calculation. In addition, it is capable of handling very long reference sequences (in the order of millions of nucleotides), a requirement for the target application in cancer research. Performance compares favorably against CPU, being on the order of 9 - 130 times faster, 3 times faster than the CUDA-enabled CUDASW++v2.0 for medium sequences or larger. Additionally, it is on par with Farrar's performance, but with less constraints in sequence length.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
26
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信